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After circles, ellipses are probably the most familiar curves in all of mathematics. Like
circles, they are a special subclass of the so-called conic sections, or curves obtained
by slicing a cone with a plane, and their applications are many and varied. For ex-
ample, thanks to Johannes Kepler and his laws of planetary motion, astronomers know
ellipses as the orbits of planets and many comets about the sun. In acoustics, archi-
tects have used the reflection property of ellipses—namely, that a light ray originating
at one focus is reflected off the ellipse to the other focus—to construct whispering
galleries in such places as St. Paul’s Cathedral in London and Statuary Hall in the
U. S. Capitol. Ellipses even find their way into modern medicine, where the reflection
property is the basis for lithotripsy, a medical procedure for treating kidney stones and
gall stones without invasive surgery. They also crop up from time to time in bad jokes
mathematicians often like to tell: “What shape is a kiss?” “A lip tickle!”

In analytic geometry we learn that an ellipse is the set of all points in the plane
the sum of whose distances from two fixed points is a given positive constant. Using
this definition along with the distance formula, we may derive equations for ellipses
which, in general, are of the form Ax2

+ Bxy + Cy2
+ Dx + Ey + F = 0, where

B2
− 4AC < 0. However, we may translate and rotate the axes as necessary to obtain

the familiar equation of an ellipse centered at the origin with semimajor axis a and
semiminor axis b, namely,

x2

a2
+

y2

b2
= 1,

which looks like FIGURE 1.
This beautiful object is certainly a curve, and its shape is evidently elliptical, so

you would think that mathematicians would call it an “elliptic curve.” But they do not.
The name “elliptic curve” is reserved for a very different class of curves and, as with
ellipses, we can define these in more than one way.

We can start with curves in the real plane R2, but much of the theory of elliptic
curves depends on seeing them in C2. All in good time: for now, we give a simplified
definition, namely that an elliptic curve is the set of solutions to an equation of the form
E(x, y) = 0, where E(x, y) is a cubic polynomial in x and y. We require further that
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Figure 1 An ellipse with semimajor axis a = 3 and semiminor axis b = 2

E(x, y) is nonsingular, which means that at no point do the function E and its partial
derivatives Ex and Ey all vanish simultaneously. We may apply transformations, such
as translations and other more complicated ones, to show that for our purposes, elliptic
curves all have the form

y2
= p(x),

where p(x) is a cubic polynomial with no repeated roots. FIGURE 2 has two examples.
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Figure 2 Two elliptic curves: y2
= x3

− 4x (left) and y2
= x3

− 3x + 3 (right)

Elliptic curves come from algebraic geometry, and their applications show up in
various systems of public key cryptography, in the factorization of large integers, in
primality testing, and most famously in the proof of Fermat’s Last Theorem. There
are two principal facets to the study of elliptic curves, namely the discrete (which
arises mainly from problems in number theory and abstract algebra) and the continuous
(coming principally from the realms of calculus and complex analysis). The paper
“Three Fermat trails to elliptic curves” [5] is a look at the history of the subject’s
discrete side via the congruent numbers problem, Fermat’s Last Theorem, and the
search for nontrivial integer solutions of x4

+ ax2 y2
+ y4

= z2, showing how each
of these problems found solutions by recasting them as questions involving elliptic
curves.
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This paper has a very different focus and motivation. It deals with the history of the
continuous side of the subject, from attempts to rectify the ellipse all the way up to the
Weierstrass ℘-function. It thus serves as a companion piece to [5]. But why is such an
article necessary? Well, when comparing FIGURES 1 and 2, many might be tempted
to ask why it is that ellipses and elliptic curves look nothing like each other, yet have
names that sound so similar. And they are quite right to wonder, because elliptic curves
have almost nothing to do with ellipses at all. Why then are they called elliptic curves?

The answer lies in the word almost. There is a connection between ellipses and
elliptic curves, but it’s not at all obvious and is the result of a connected but distinctly
nonlinear sequence of mathematical events. The simplest mathematical reason why
ellipses are not elliptic curves is that their algebraic forms are fundamentally different:
as we have seen, ellipses are quadratic, elliptic curves are cubic.

But this is not a particularly interesting answer. Nor does it explain how such dif-
ferent geometrical objects ended up with such similar-sounding names. To really an-
swer the question properly, we need to look back at the history and development of
these concepts. We will therefore take a stroll through the history of mathematics, en-
countering first the ellipse, moving on to elliptic integrals, then to elliptic functions,
jumping back to elliptic curves, and eventually making the connection between elliptic
functions and elliptic curves. We will then finally be in a position to find out why no
elliptically-shaped planar curves may ever be called elliptic curves.

From ellipses to elliptic integrals

It all started, as many mathematical stories do, in ancient Greece and with one of the
three classical construction problems, known as the Duplication Problem: given a cube
with a certain volume V , construct a cube of volume 2V using only a compass and a
straightedge. In modern notation, if a is the edge of the original cube, the goal is to
construct a line segment of length a 3

√
2. One early geometrical solution, ascribed to

Hippocrates of Chios (ca. 460–380 BCE), involved determining two lengths x and y
that satisfy the proportions

a : x = x : y = y : 2a.

Considering the three proportions separately and treating x and y as variables, the
4th century BCE mathematician Menaechmus showed that these proportions yield the
curves x2

= ay, y2
= 2ax , and xy = 2a2, which we recognize as equations of two

parabolas and a hyperbola. For, if we multiply the first equation by x and the third
equation by a, we are led to the equations x3

= axy = 2a3; hence, x = a 3
√

2.
Menaechmus showed that any two of these equations imply the third, and that

the lengths x and y are indeed the lengths required to produce the length a 3
√

2. (We
note that the Greek geometers developed several other constructions for finding a 3

√
2,

including Archytas of Tarentum’s ingenious method involving the intersection of a
cylinder, a torus with zero interior diameter, and a right circular cone. Pierre Wantzel
(1814–1848) finally proved in 1837 that constructing a 3

√
2 using only compass and

straightedge is impossible—but that’s another story.) Menaechmus went on (some say)
to describe these as conic sections, discovering the ellipse in the process. Around 300
BCE Euclid wrote Conics, a major work, now known only through later commentaries,
and containing a number of theorems on various properties of ellipses.

But it was Apollonius of Perga (ca. 262–190 BCE) who, in his eight-volume treatise
On Conics [10], provided the most exhaustive study to date of the subject, as well as
giving them the name ellipse, from the Greek elleipsis, meaning “falling short.” So
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comprehensive was Apollonius’s work that for nearly two millennia, it contained the
majority of what was known on the subject. But there were gaps, and by the 17th
century, mathematicians finally began to develop techniques that could fill them.

One question that Apollonius could not answer precisely was how to find the arc
length of an ellipse. Geometric techniques were insufficient, as ellipses are curved
shapes, but the invention of the integral calculus in the 1660s and 1670s provided a
marvelous new tool for answering this question. With the introduction of this new
technique, the question of finding the precise lengths of various curves, including the
ellipse, became a major open problem for mathematicians. The arc length formula is
one of the standard topics in courses on integral calculus: if y = f (x) is continuous
and has a continuous derivative on the interval [a, b], then the length Lb

a of the curve
is given by

Lb
a =

∫ b

a

√
1+ ( f ′(x))2 dx .

But the first attempts from that era to find the arc length of an ellipse involved se-
ries, not integrals. For example, in 1669, Isaac Newton (1642–1727) expressed the arc
length of an ellipse as an infinite series; other series-based expressions followed from
the great Swiss genius Leonhard Euler (1707–1783) in 1733 and the Scottish mathe-
matician Colin Maclaurin (1698–1746) in 1742. Why did they avoid integration?

To understand why, let’s try using integration to find the arc length of an ellipse
between, say, x0 and x1 and see what happens. Let a and b be positive numbers with
a > b, and consider the ellipse

x2

a2
+

y2

b2
= 1.

We solve this equation for y and take the positive square root, which yields the func-
tion y = f (x) = b

√
a2 − x2/a. We calculate

√
1+ ( f ′(x))2 and simplify the result-

ing messy expression by setting k =
√

a2 − b2/a; this transforms the resulting arc
length integrand into

√
(a2 − k2x2)/(a2 − x2), and the arc length formula becomes

L x1
x0
=

∫ x1

x0

√
a2 − k2x2

a2 − x2
dx .

Thus the total arc length, L , of the ellipse is given by

L = 4
∫ a

0

√
a2 − k2x2

√
a2 − x2

dx .

Unfortunately, this integral cannot be evaluated directly. The same is true if we use
trigonometric functions to parameterize the curve as x = a sin t , y = b cos t , for 0 ≤
t ≤ 2π , when the integral becomes

L = 4a
∫ π/2

0

√
1− k2 sin2 t dt.

This integral, in either the algebraic or the trigonometric form, is commonly known
as an elliptic integral. To be more precise, this particular integral is called an elliptic
integral of the second kind. The first part of this name arises because we are trying to
determine the arc length of an ellipse via integration. But why “of the second kind”?
And how many kinds are there?
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The terminology and classification were introduced by the French mathematician
Adrien-Marie Legendre (1752–1833). Legendre was fascinated by various interest-
ing types of integrals which could not be computed by regular means—today we
would call these “non-elementary integrals.” These are integrals of functions f (x) for
which f does not have an antiderivative expressible in terms of elementary functions—
polynomial, rational, algebraic, trigonometric, logarithmic or exponential. Starting in
the 1750s, Euler had derived a great many results about these kinds of integrals, but it
was Legendre who turned the subject into a systematic theory.

For 40 years from 1786, Legendre worked with many kinds of nonelementary inte-
grals. He finally realized that the integrals arising from the above arc-length calcula-
tions could be expressed as one of three fundamental types, which we now define as
elliptic integrals of the first, second, and third kind, respectively:

F(φ) =
∫ φ

0

dt√
1− k2 sin2 t

,

E(φ) =
∫ φ

0

√
1− k2 sin2 t dt, and

5(φ) =

∫ φ

0

dt(
1+ n sin2 t

)√
1− k2 sin2 t

.

Here, k, or the modulus, is a value in [0, 1]. Strictly speaking, the modulus k is a real
constant such that k2 is not equal to 0 or 1, but most texts on elliptic integrals restrict
k such that 0 < k < 1. The upper limit of the elliptic integrals, the amplitude φ, can
be any real number, although it makes sense to focus on values in [0, π/2]. As for
the word amplitude, this expression arose from Legendre’s usage in referring to the
physical applications which drove much of his work on elliptic integrals. Finally, in
the elliptic integral of the third kind, n is taken to be a real constant, usually assumed
to be nonzero because the case n = 0 reduces to the elliptic integral of the first kind.

Between 1825 and 1828, Legendre published a three-volume treatise [16] on these
elliptic integrals (which, confusingly for us, he called elliptic functions), containing
much of his four decades of work on the subject. How ironic, then, that just as Legen-
dre was finishing his life’s work, two young mathematicians were just beginning theirs
with ideas that would render many of Legendre’s techniques obsolete. Those two math-
ematicians were Niels Henrik Abel (1802–1829) and Carl Gustav Jacobi (1804–1851).

From elliptic integrals to elliptic functions

Both Abel and Jacobi wrote Legendre’s elliptic integrals using the substitution x =
sin t , to give

F(u) =
∫ u

0

dx√(
1− x2

) (
1− k2x2

) ,
E(u) =

∫ u

0

1− k2x2√
(1− x2)(1− k2x2)

dx, and

5(u) =
∫ u

0

dx(
1+ nx2

)√(
1− x2

) (
1− k2x2

) (where |u| ≤ 1),
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as the elliptic integrals of the first, second, and third kind, respectively. Indeed, to this
day, elliptic integrals are still defined as those whose integrands are rational functions
involving square roots of cubic or quartic polynomials. But it was Abel who realized
that these integrals, although interesting and important, were not the most significant
thing to be studying. (Gauss had realized this 30 years before, but did not publish his
findings.) Consider the well-known integral

u = f (x) =
∫ x

0

dt
√

1− t2
,

which, as we learn in calculus, is the inverse sine function. Abel argued that the
function f (x) defined by this integral was not as convenient to use as its inverse,
x = f −1(u) = sin u. Likewise, he said, we should turn our attention from elliptic in-
tegrals to their inverses, which we now call elliptic functions.

Jacobi took this idea and ran with it [12]. He noticed that if k = 0 in the first kind
of elliptic integral, we would simply get the inverse sine function. So for nonzero k,
he defined the inverse of the first elliptic integral to be what he called the “sine ampli-
tude” or sn u. Now, just as in regular trigonometry, where everything else can be built
on the sine function, Jacobi went on to define further elliptic functions, such as the
“cosine amplitude” function cn u =

√
1− sn2u, and the “delta amplitude” function

dn u =
√

1− k2sn2u. He soon found that his new elliptic functions had many similar
properties to the familiar trigonometric functions. For example, the regular sine func-
tion is periodic with period 2π , so that for any integer n, sin(x + 2πn) = sin x . But
Jacobi’s sine amplitude function was doubly periodic; in other words, there were two
distinct numbers α and β (both complex, with α/β /∈ R) such that

sn(u + mα) = sn(u + nβ) = sn u.

In 1835, Jacobi proved that no single-valued function that is either analytic or mero-
morphic (that is, analytic except possibly at locations called poles, where a denomi-
nator vanishes to finite order) could ever have more than two independent periods. In
fact, the only such functions to have two such periods were the elliptic functions. By
1847, a young German prodigy by the name of Ferdinand Gotthold Eisenstein (1823–
1852) had taken the innovative step of starting with the periods to define the elliptic
functions via infinite series (see [7], [21]). From there, he proved a startling result that
made a connection between elliptic functions and a particular kind of cubic curve, to
whose history we now turn.

The pre-history of elliptic curves

Having traced the study of the ellipse—particularly its arc length—to what we now
call elliptic functions, let’s back up and trace another story which originated with the
Greeks and helps us understand elliptic curves.

In our introduction, you learned that an elliptic curve is a curve of the form y2
=

p(x), where p(x) is a cubic polynomial with no repeated roots. Although such cubic
curves were not studied in detail until the late 1600s, two different problems from the
apparently unrelated area of number theory, both going back many centuries, mark the
origin of questions involving these curves. (In what follows, we will call these cubic
curves elliptic curves, although they did not receive this name until the early twentieth
century.)

The first problem comes from Diophantus of Alexandria’s Arithmetica [11], written
some time during the third or fourth century CE. Problem 24 of Book IV reads as
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follows: “To divide a given number into two numbers such that their product is a cube
minus its side.” If we call Diophantus’ given number a, the task is to find X and Y
such that

Y (a − Y ) = X 3
− X.

Diophantus solved the problem for a = 6 by substituting X = kY − 1 and choos-
ing the value k = 3; this causes the resulting polynomial in Y to have only a cu-
bic and quadratic term. Ignoring the double root Y = 0, he obtained Y = 26/27 and
X = 17/9. Therefore, the two numbers called for in the problem are Y = 26/27 and
a − Y = 136/27 (since 26/27+ 136/27 = 6), and the product of those two numbers
is (17/9)3 − (17/9). (For additional details, see [4, pp. 34–35].)

We note that Diophantus’ curve Y (a − Y ) = X 3
− X is actually an elliptic curve in

disguise, for the linear substitution y = Y − a/2, x = −X leads to y2
= x3

− x +
(a/2)2. Now, it is important to stress that Diophantus had no concept of analytic
geometry or modern algebraic notation, and certainly no idea about elliptic curves.
Nevertheless, his work marked the beginning of a chain of inquiry that was to have
wide-reaching and deep consequences many centuries later.

The second problem related to elliptic curves dates from certain Arabic manuscripts
of roughly the eighth century, and Leonardo of Pisa, better known as Fibonacci
(ca. 1175–1250), made it famous in Europe. He encountered the problem in question
at the court of the Holy Roman Emperor Frederick II—namely, to find a rational
number r such that both r 2

− 5 and r 2
+ 5 are rational squares. Fibonacci found

such a number, namely r = 41/6 : sure enough, r 2
− 5 = (31/6)2, r 2

= (41/6)2 and
r 2
+ 5 = (49/6)2 are indeed all squares. In his 1225 book Liber quadratorum (The

Book of Squares) [19], Fibonacci called the positive integer n a congruent number if
u2
− n, u2 and u2

+ n are all nonzero squares for some rational number u.
The connection with elliptic curves lies in the fact that if n is a congruent number,

then the product of the three nonzero rational squares u2
− n, u2 and u2

+ n is also a
nonzero rational square, say, v2. In modern terminology, this implies that (u2, v) is a
point on the curve En : y2

= x3
− n2x = x(x − n)(x + n) with rational coordinates

that are not both zero—a so-called nonzero rational point. Now for every positive
integer n, x(x − n)(x + n) is a cubic polynomial with distinct roots, which implies
that En is an elliptic curve. Thus, if n is a congruent number, then the elliptic curve En

contains a nonzero rational point. (For more information about congruent numbers, see
the companion paper [5]; in addition, Koblitz uses congruent numbers as a unifying
theme throughout his excellent book [15] on elliptic curves.)

Both of these ancient problems resurfaced in the early seventeenth century, when the
French mathematician Claude-Gaspar Bachet de Meziriac (1581–1638) made a Latin
translation of Diophantus’s Arithmetica and published it in 1621 [3]. This translation
contained an appendix, which included Fibonacci’s congruent numbers problem, as
well as some original results about Diophantine equations. One of the latter was the
following theorem, which we give in modern notation. Fix an integer c and consider
the equation y2

= x3
+ c. If (x, y) is a solution to this equation with x and y both

rational numbers, i.e., a rational solution, then(
x4
− 8cx

4y2
,
−x6
− 20cx3

+ 8c2

8y3

)
is also a rational solution.

The impact that Bachet’s translation of the Arithmetica had on the history of math-
ematics is a direct consequence of the fact that Pierre de Fermat (1601–1665) acquired
a copy of it around 1630. Fermat’s chief mathematical contributions lie in his work in
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number theory: his introduction of the ideas of divisibility and primality gave the sub-
ject its definitive flavor, its most tantalizing question, and the direction it has taken for
the better part of the last four centuries. Fermat’s copy of Bachet’s translation, which
was reproduced and published by his son Samuel in 1670 [9], contained copious notes,
annotations, and conjectures, including the famous Fermat Conjecture that if the inte-
ger n is greater than 2, then the equation xn

+ yn
= zn has no integer solutions with

xyz 6= 0—ultimately proved by Andrew Wiles and Richard Taylor in 1994.
Among Fermat’s collected works we find several references to problems involv-

ing what we would now call elliptic curves, in particular, his conjecture that the only
integers satisfying the equation y2

= x3
− 2 are (x, y) = (3,±5), and that the only

integers satisfying y2
= x3

− 4 are (x, y) = (2,±2) and (x, y) = (5,±11).
Fermat’s remarkable work might have gone unnoticed, except that during the 1730s,

Leonhard Euler obtained a copy of Fermat’s collected works. He was so struck by
this body of mathematics that he proceeded to verify nearly all of Fermat’s conjec-
tures, including Fermat’s statement about integer points on the curves y2

= x3
− 2 and

y2
= x3

− 4. Euler expanded the scope of number theory far beyond Fermat’s work,
and his influence gave number theory its status as a legitimate field of mathematical
inquiry [8]. Euler also did quite a bit of work on the congruent numbers problem and,
as noted earlier, derived many results about elliptic integrals. The latter included for-
mulas for adding these integrals, which provided a starting point for Legendre’s work
on the same subject in the 1780s.

In the meantime, during the 1670s, Newton used the recently developed tools of
analytic geometry to try to classify cubic curves, in particular those of the form y2

=

ax3
+ bx2

+ cx + d [17]. In doing so, he explained the mysteries behind both Dio-
phantus’ Arithmetica problem and Bachet’s theorem about rational solutions to y2

=

x3
+ c. He pointed out that both Diophantus and Bachet were essentially intersecting

a line with a cubic curve, and that in general, such an intersection consists of three
points. However, if the line is tangent to the curve, then two of those three points are
the same. FIGURE 3 tells the story.

P

Q

P * Q

P + Q

y2 = x3 – 4x

R

R * R

R + R

y2 = x3 + 2

Figure 3 Chord and tangent addition

For the curve on the left, the line through P and Q intersects the curve in the third
point P ∗ Q; for the curve on the right, the tangent to the curve at R intersects the
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curve in the “third point” R ∗ R. Using this star ∗ operation we can define an addition
of the points on our curve. Namely, we define the sum P + Q and R + R to be the
reflections of P ∗ Q and R ∗ R, respectively, in the x-axis. This so-called chord and
tangent addition gives the elliptic curve a group structure, which future researchers
would find extremely useful—but that’s another story, for which see [5].

Newton’s insight ultimately led to general formulas for the addition of points on
curves of the form y2

= ax3
+ bx2

+ cx + d (see [14, p. 10], for details), but it would
first require the discovery of an amazing connection between such curves and elliptic
functions. And it is precisely that connection which brings us back to the groundbreak-
ing work of Gotthold Eisenstein in 1847.

From elliptic functions to elliptic curves

In order to appreciate Eisenstein’s work, let’s begin with an infinite series. Now it is
probably not obvious, but it is true that

∞∑
m=−∞

(z + mπ)−2
= (sin z)−2.

(To begin to informally convince yourself of this, note that replacing z by z + 2π on
both sides of the equation leaves the relationship unchanged. For a formal proof, see [1,
p. 11].) And since all trigonometry is ultimately based on the sine function, the whole
subject could in theory be founded just as well on the above infinite series. Using this
as his inspiration, Eisenstein constructed a new function out of a doubly infinite series,
namely

∞∑
m,n=−∞

(z + mω1 + nω2)
−2

where ω1, ω2 ∈ C, and ω1/ω2 /∈ R. A bit of algebra reveals that this convergent series
has two distinct periods, ω1 and ω2.

As previously noted, Jacobi had proved that the only single-valued meromorphic
(i.e., analytic everywhere except for poles) functions with two linearly independent
periods are the elliptic functions. Indeed, the modern definition of an elliptic func-
tion is a single-valued, meromorphic function f , defined on C, for which there exist
two distinct complex numbers ω1 and ω2 such that ω1/ω2 is not a real number and
f (z + ω1) = f (z + ω2) = f (z). And since Eisenstein’s series-based function is de-
fined over C, is single-valued, meromorphic and doubly-periodic, it therefore has to
be an elliptic function.

It was then that Eisenstein came up with a massively important result (see [21,
pp. 22–24]). He proved that all elliptic functions of the form

y(z) =
∞∑

m,n=−∞

(z + mω1 + nω2)
−2
−

∞∑
m,n=−∞
(m,n)6=(0,0)

(mω1 + nω2)
−2

must satisfy differential equations of the form[
y′(z)

]2
= p(y(z)),

where p is a cubic polynomial (depending on ω1 and ω2) with no repeated roots.



172 MATHEMATICS MAGAZINE

Does the phrase “a cubic polynomial with no repeated roots” ring a bell? If it does
not, go back and re-read our introductory section: we’ll wait for you.

∗ ∗ ∗

That’s right—we defined an elliptic curve to be a curve of the form y2
= p(x), where

p(x) is a cubic polynomial with no repeated roots. We thus see that Eisenstein’s work
connects elliptic functions with elliptic curves.

A decade and a half later, in 1863, the famous analyst Karl Weierstrass (1815–1897)
used this to define perhaps the most famous elliptic function of all, the Weierstrass ℘-
function [20]:

℘(z) = ℘(z;ω1, ω2) = z−2
+

∞∑
m,n=−∞
(m,n) 6=(0,0)

[
(z − mω1 − nω2)

−2
− (mω1 + nω2)

−2
]
.

As one would expect of an elliptic function, the ℘-function is doubly periodic with
periods ω1 and ω2. But so are its derivative ℘ ′(z), and its second derivative ℘ ′′(z),
and so on. In fact all of its derivatives are elliptic functions with periods ω1 and ω2.
Furthermore—and this is the amazing bit—every single elliptic function with periods
ω1 and ω2 can be written as a rational function of ℘(z) and ℘ ′(z). (For a proof of this
standard result, see [2, p. 189].) In other words, just as the sine function is the basis
for all other trigonometric functions, so is the Weierstrass ℘-function the basis of all
other elliptic functions.

By means of a clever argument using series, Weierstrass was able to show that the
differential equation that his function satisfied was indeed a cubic, just as Eisenstein
had proved, namely [

℘ ′(z)
]2
= 4℘3(z)− g2℘(z)− g3,

where g2 and g3 are special constants depending only on ω1 and ω2. It is therefore not
hard to see that the point (℘ (z), ℘ ′(z)) lies on the cubic curve

y2
= 4x3

− g2x − g3.

Now in calculus, you learn about parametric equations and how they can describe
a curve. By a parameterization of a curve C , we mean a continuous bijection from
a set of numbers to the set of all points on C . For example, letting x = a sin t and
y = b cos t with t ∈ [0, 2π) gives a familiar parameterization of the standard ellipse
x2/a2

+ y2/b2
= 1. In the same way, we see that setting x = ℘(z) and y = ℘ ′(z)

gives a parameterization of the cubic curve y2
= 4x3

− g2x − g3.
(You may wonder about the domain of the set of complex numbers z needed for

the parameterization of the cubic. We’ll get to that later. We also note that in order
to rigorously prove parameterization, one must show the existence of a continuous,
bijective map. Those interested in the details should consult [15, pp. 22–26].)

Now, cubic curves of the form y2
= ax3

+ bx2
+ cx + d had been well known for

years. Indeed, as we mentioned earlier, Isaac Newton carried out a major study of them
in the 1670s. But it wasn’t until 1834 that Jacobi pointed out a possible connection be-
tween cubic curves and elliptic functions [13], followed by Eisenstein’s proof of such
a relationship in 1847. Then in 1864, a German mathematician by the name of Alfred
Clebsch (1833–1872) introduced the idea above of using elliptic functions to param-
eterize cubic curves [6], and Weierstrass linked a clever addition formula for elliptic
functions to the addition of points on these cubic curves. Finally, in a landmark pa-
per of 1901 [18], Henri Poincaré (1854–1912) tied all these ideas together, effectively
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marking the birth of a new area of study. And because they require elliptic functions
for their parameterization, these curves became known as elliptic curves.

Why ellipses are not elliptic curves

We have thus seen the historical path that led from the ellipse, first of all to elliptic in-
tegrals (one of which expresses the arc length of an ellipse), then to elliptic functions
(obtained by inverting an elliptic integral), and finally to elliptic curves (which require
elliptic functions for their parameterization). All of this leads to the question we posed
at the beginning: why are ellipses not elliptic curves? The answer lies firstly in extend-
ing the domain of both curves from the reals to the complex numbers, and secondly
in the matter of their respective parameterizations. We have already mentioned that
ellipses may be parameterized by trigonometric functions, and this holds as much for
ellipses in C2 as it does for those in R2. But in C2 such curves are best described, not as
curves at all, but as surfaces. In particular, curves parameterizable by singly-periodic
complex-valued functions are topologically equivalent to spheres. Here is one way to
see this.

As functions in R2, the single periodicity of the sine and its derivative, cosine, means
that their domain is R mod 2πZ. Now on the real line, 2πZ is a one-dimensional lat-
tice, so geometrically, R mod 2πZ is a circle. If we change the domain to C and map
to C∗ × C∗, where C∗ = C ∪ {∞}, here’s what happens. Since the ellipse is parame-
terized by sin z and cos z, its (complex) domain is divided into infinitely long vertical
strips with real width 2π , as in the following figure, where on the left we see the plane
with the vertical lines Re(z) = π and Re(z) = −π drawn. The periodicity of sine and
cosine means that every distinct point in the complex plane corresponds to a distinct
point in this strip; thus the ellipse, since it is parameterized by these two functions, is
completely described by how they map the points in this strip. Since we are mapping
to a compact set, we can identify all points in the strip such that Im(z) = ±∞ with a
single point,∞. If we further identify the two lines Re(z) = π and Re(z) = −π , this
transforms the strip into a surface with∞ represented by a point at the top, the origin
by a point at the bottom, and a meridian line, corresponding to the identified vertical
lines, joining the two points along the surface. As we see on the right, this resulting
geometric figure is topologically equivalent to a sphere.

∞

–∞

π–π

0

∞

π–π

Figure 4 The complex co-domain of an ellipse is a sphere

However, just as the elliptic integral representing the arc length of an ellipse cannot
be evaluated using regular calculus techniques, elliptic curves cannot be parameterized
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by elementary functions. The simplest functions that will successfully parameterize
elliptic curves are elliptic functions, and it is this parameterization that is the key to
understanding why ellipses are not elliptic curves.

Suppose we have an elliptic curve

y2
= ax3

+ bx2
+ cx + d.

Then the ordered pairs (x, y) that work in this equation can be written as ( f (z), f ′(z)),
where f (z) is an elliptic function with periods ω1 and ω2. Since f (z) is elliptic, it
is a rational function of ℘(z) and ℘ ′(z), as is its derivative f ′(z), which is also an
elliptic function with the same periods. Not only that, but it can be shown that the
correspondence (x, y)↔ ( f (z), f ′(z)) between all points (x, y) on the elliptic curve
and complex numbers z ∈ C/3, where

3 = {mω1 + nω2 : m, n ∈ Z},

is one-to-one and onto; see, for example, [15, pp. 22–26]. In other words, the functions
x = f (z) and y = f ′(z) parameterize the elliptic curve, and the fact that f and f ′ have
periods ω1 and ω2 means that there is a one-to-one correspondence between all points
on the curve and the equivalence classes

z +3 = {z + mω1 + nω2 : m, n ∈ Z}.

The double-periodicity of f and f ′ thus partitions the complex plane into a lattice that
looks something like FIGURE 5.

–ω1 – ω2

–ω2

ω1 – ω2

2ω1 – ω2

2ω1

2ω1 + ω2

2ω1 + 2ω2ω2

2ω2

ω1 + 2ω2

0

ω1

ω1 + ω2–ω1

–ω1 + ω2

–ω1 + 2ω2

Figure 5 The lattice 3 generated by ω1 and ω2

Elliptic curves, which require elliptic functions for their parameterization, are thus
isomorphic to the space C/3 of these equivalence classes. On the other hand, as we
have seen, ellipses, since they can be parameterized by elementary trigonometric func-
tions, are isomorphic to the sphere. But C/3 is not topologically equivalent to a sphere
at all. Instead, it is a torus! To see this, look at FIGURE 6. The top left shows one of
the infinitely many parallelograms which make up the lattice in FIGURE 5. (Since the
parallelograms are all congruent to each other, it doesn’t really matter which one we
choose.) The top right shows this parallelogram rolled up into a cylinder, so that edge C
meets edge A. Imagine that this resulting cylinder is made of material flexible enough
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0
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B

C
D

ω2

A

B
C

D

A A

D B

C C

Figure 6 C/3 is a torus

to be bent round so that edge B and edge D can be joined together, as in the bottom
figure. It is clear that the resulting surface formed by this rolled-up parallelogram is a
torus. Thus, since every point on an elliptic curve can be mapped to one of these “pe-
riodic parallelograms,” which in turn can be transformed into tori, every elliptic curve
is topologically equivalent to a torus.

Now, a torus is a surface that is completely incapable of being (legitimately) trans-
formed into a sphere, meaning that no curve isomorphic to a sphere could possibly
belong to a set of objects isomorphic to C/3. This gives a visually very obvious—and
mathematically, very profound—reason why elliptic curves are not parameterizable by
any elementary functions.

It also tells us why ellipses are not (and never could be) elliptic curves!
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Summary Elliptic curves are a fascinating area of algebraic geometry with important connections to number
theory, topology, and complex analysis. As their current ubiquity in mathematics suggests, elliptic curves have a
long and fascinating history stretching back many centuries. This paper presents a survey of key points in their
development, via elliptic integrals and functions, closing with an explanation of why no elliptically-shaped planar
curved line may ever be called an elliptic curve.
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