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1. Introduction

Suppose a finite set of n points are randomly scattered about in the plane. How can
they be joined by a network of straight lines with the shortest possible total length?
The solution to this problem has practical applications in the construction of a variety
of network systems, such as roads, power lines, pipelines, and electrical circuits.

It is easy to see that the shortest network must be a tree, that is, a connected

network containing no cycle. (A cycle is a closed path that allows one to travel along a
connected path from a given point to itself without retracing any line.) If no new
points can be added to the original set of points, the shortest network connecting
them is called a minimum spanning tree.
* A minimum spanning tree is not necessarily the shortest network spanning the
original set of points. In most cases a shorter network can be found if one is allowed to
add more points. For example, suppose you want to join three points which form the
vertices of an equilateral triangle. Two sides of the triangle make up a minimum
spanning tree. This spanning tree can be shortened by more than 13 percent by
adding an extra point at the center and then making connections only between the
center point and each corner (see Ficure 1). Each angle at the center is 120°.

length 2 length \/5

FIGURE 1

A less obvious example is the minimum network spanning the four vertices of a
square. One might suppose one extra point in the center would give the minimum
network, but it does not. The shortest network requires, in fact, fwo extra points (see
FiGcure 2). Again all the angles around the extra points in the network are 120°. The
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FIGURE 2

network with one extra point in the center has length 2V2, or about 2.828. The
network with two extra points reduces the total length to 1 + V3, or about 2.732.

One of the first mathematicians to investigate such networks was Jacob Steiner, an
eminent Swiss geometer who died in 1863. The extraneous points that minimize the
length of the network are now called Steiner points. It has been proved that all Steiner
points are junctions of three lines forming three 120° angles. The shortest network,
allowing Steiner points, is called a minimum Steiner tree. Minimum Steiner trees are
almost always shorter than minimum spanning trees, but the reduction in length
usually depends on the shape of the original spanning tree. It has been conjectured [9]
that for any given set of points in the plane, the length of the minimum Steiner tree
cannot be less than a factor of V3 /2, or about .866, times the length of the minimum
spanning tree; the result has been proved, however, only for three, four, and five
points [10],[12].

Many properties of minimum Steiner trees can be found in the excellent (but
somewhat out-of-date) survey paper of E. N. Gilbert and H. O. Pollak [9]. The best
current lower bound for the ratio of the minimum Steiner tree to the minimum
spanning tree is .8241...(see [4]).

There are many ways to construct a minimum spanning tree. One of the simplest
methods is known as a greedy algorithm, because at each step it bites off the most
desirable piece. First find two points that are as close together as any other two and
join them. If more than one pair of points are equally close, choose any such pair.
Repeat this procedure with the remaining points in such a way that joining a pair
never completes a circuit. The final result is a spanning tree of minimum length. This
algorithm is due to Kruskal in a 1956 paper [11].

Given the simplicity of Kruskal’s greedy algorithm for the construction of minimum
spanning trees, one might suppose there would be correspondingly simple algorithms
for finding minimum Steiner trees. Unfortunately, however, this is almost certainly not
the case. This task belongs to a special class of “hard” problems known in computer
science as NP-complete problems. When the number of points in a network is small,
say 10 to 20, there are known algorithms [5], [13] for finding minimum Steiner trees in
a reasonably short time. As the number of points grows, however, the computing time
needed increases at a rapidly accelerating pace. Even for a relatively small number of
points the best algorithms currently available could take tl:ousands or even millions of
years to terminate. Most mathematicians believe no efficient algorithms exist for
constructing minimum Steiner trees on arbitrary sets of points in the plane [7],[8].

Imagine, however, that the points are arranged in a regular lattice of unit squares,
like the points at the corners of the cells of a checkerboard. Is there a “good”
algorithm for finding a minimum Steiner tree spanning the points of such regular
patterns? In particular, what is the length of the minimum Steiner tree that joins the
81 points at the corners of a standard checkerboard? Is the tree in Ficure 3 the
solution?

Many problems involving paths through points in the plane, which are hard when
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length 73.033

FIGURE 3

the points are arbitrary, become trivial when the points form regular lattices. One
might expect that the task of spanning points in such arrays by minimum Steiner trees
would be equally trivial. On the contrary, this problem seems to be surprisingly
elusive. Up to now, only minimum Steiner trees for 2 by n rectangular arrays of points
have been constructed [3]. Aside from this special case, very little seems to be known
about how to find minimum Steiner trees for rectangular arrays when the number of
points on each side is greater than 2.

In this paper, we will summarize various problems, conjectures, and some partial
results on the minimum Steiner trees for rectangular arrays. Section 2 contains the
shortest known trees for square lattices of small size. These trees consist of copies of
the symmetrical tree on four points (see Ficure 2(c)), which we call X from now on,
together with a small number of “exceptional” pieces. For example, the conjectured
solution for 64 points is a union of 21 X’s (see Ficure 5). In Section 3, we give a
proof that a rectangular array can be spanned by a Steiner tree made up entirely of
X’s if and only if the array is a square and the order of the square is a power of 2.
Further questions are proposed in Section 4.

2. Short Steiner trees on square lattices

In this section, we will first show the shortest Steiner trees we currently know for
square lattices of size up to 14 by 14. We will then discuss a scheme for constructing
Steiner trees for large square lattices from the small ones. Among all the constructions,
only the patterns for the 2 X 2, 3 X3 and 4 X 4 squares have been proved to be
minimum Steiner trees (unpublished results of E. J. Cockayne). The constructions for
square lattices of orders 2 to 9 were contained in the June 1986 issue of Scientific
American [6). The trees for square lattices of sizes 10 by 10 and 22 by 22 in the same
article were soon improved by many readers. The current best tree for the 10 by 10
square lattice is due to one of the authors (RLG) and the best tree for the 22 by 22
square lattice is due to Eric Carlson [1]. His construction has the same total length as
our general construction. Overall, the constructions fall naturally into six classes,
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depending on what n is modulo 6, with the rare (and remarkable) exceptions which
occur when n is a power of 2. It seems that the Steiner trees for square lattices are
always formed by attaching small minimum Steiner trees such as an edge E (for the 1
by 2 array), X (for the 2 by 2 array), a triangle T (formed from three vertices of a
square) and L (for the 2 by 5 array). We will use the following notation:

Tree Symbol Length
>—ae E e=1
T (=18 ongs
Ve
}{ X x=1+y3 =273205. ..

M L 1=/35+20/3 =834512...

FIGURE 4

The tree L is a minimum Steiner tree on the regular 2 by 5 array [3]. The minimum
Steiner tree for the 2 by n array with n even is just made up of X’s joined together
by edges. On the other hand the minimum Steiner tree for the 2 by n array with n
odd has length 1((n(2 + v3) — 2)2 + 1)*/2 The constructions for n X n, n < 14, are
illustrated in FiIGURE 5.

n Conjectured Minimum Steiner Tree Length
*
2 >.< x=2.73205. ..
*
3 2x+2="7.46410...

*known to be optimal

FIGURE 5
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n

Conjectured Minimum Steiner Tree

FIGURE 5 (con’t)

Length

5x = 13.66025. ..

Tx + 3 =22.12436...

11x +t=31.98441...

15x + 3 = 43.98076. ..
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10

Conjectured Minimum Steiner Tree

FIGURE 5 (con’t)

Length

21x = 57.373067 ...

26x + 2 ="73.03332...

30x +1=90.30664...



VOL. 62, NO. 2, APRIL 1989 89

n Conjectured Minimum Steiner Tree Length
11 bd b b b b 39x + 3 = 109.54998
12 b P~ < P 47x + ¢t =130.33824. ..
13 < VAR 55x + 3 = 153.26279

FIGURE 5 (con’t)
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n Conjectured Minimum Steiner Tree Length

14 N A 4 62x + 1 = 17773227

FIGURE 5 (con’t)

To construct Steiner trees for large square lattices with orders not equal to a power
of 2, we will always use a “core” square with a “folded band of width 3" wrapped
around it in various ways. (The only core squares we need are 6 X 6, 10 X 10, 14 X 14
for n even, and 0 X 0, 4 X 4 and 8 X 8 for n odd.) The general pattern looks like this:

core core

n even n odd

FIGURE 6

Each additional “fold” of the strip adds 6 to the size of the grid.
For example, for n = 22, we see that 22 = 10 (mod 6) so we use a 10 X 10 core with
3 (doubled) folds of the band as shown in the picture.

10x10

FIGURE 7
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Of course, the strip must be broken and connected to the core. (See the detailed
picture in Ficure 8. We note that in order to make the connection to the strip, the
corresponding place in the core must be “striplike”.) When n is 6k, the core is 0 X 0,
i.e., empty, so we don’t have to connect it to the band. In this case, we only have to
break the band and reconnect the two isolated points with a T.

X

- Conjectured minimum Steiner tree for 22 X 22 array.

FIGURE 8

For odd n, the band doesn’t form a cycle but is open at each end, leaving two
isolated points at the end. You can see this happening in the conjectured minimum
Steiner trees for 9 X 9 and 13 X 13. In this case, when n # 0 (mod 6) we only need an
E to connect the core to the band. Summarizing these results we have: for n > 15,
n# 2.

n Length of conjectured minimum Steiner tree for G,
6k (12k2—x+1)

6k+1 (12k% + 4k — 1)x + 3

6k+2 (12k% + 8k — 2)x + 1

6k+3 (12k% + 12k + 2)x + 2

6k +4 (12k% + 16k + 2)x + 1

6k+5 (12k% + 20k + T)x + 3

where x =1+ 3, 1=35+20/3 , and t=(1+ \/§)/‘/§‘. Of course, for n =2, any
right-thinking person would guess that the length of the minimum Steiner tree for G,
is just (3)(4' — 1)x but unfortunately we can’t even prove this for ¢ = 3!
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3. Square lattices for powers of 2

Here we will give the proof of the main result in this paper.

THEOREM. If a rectangular array can be spanned by a Steiner tree made up entirely
of X’s, then the array is a square of size 2' by 2' for some t > 1.

Proof. We start by giving each 2 X2 “cell” a pair of coordinates (i, j) in the
obvious way, where the lower left-hand cell has coordinates (0, 0).

cell (1,2)

1 [ J
2
® ®
1 FIGURE 9
° ° ° ° &4— armay
0
. . *—o
0 1 2

Let’s call a cell (i, j) even if i + j is even. Also, let’s call a cell occupied if it has an
X in it. Suppose our a X b array has an X-tree, that is a Steiner tree formed by X'’s.

Fact 1. Only even cells can be occupied.

Proof. The occupied cells must be connected. Furthermore, there can’t be two
adjacent occupied cells. Thus, occupied cells can only touch each other diagonally (as
shown), in which case they are both even or both odd. However, the corner cell (0,0)
is occupied and even. Thus, all occupied cells are even.

o'l

(forbidden)

FIGURE 10

(allowed)

As a consequence, we see that a and b must both be even. Call an even cell (i, j)
doubly even if i and j are both even. Otherwise, call it doubly odd.
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Fact 2. Every doubly even cell must be occupied.

Proof. First note that all the even cells on the boundary must be occupied and are
doubly even. Suppose we had some interior doubly even cell (2i,2j) which was not
occupied. Then, we must be able to draw a path P from the center of (2i,2j) which
goes to the outside of the array and doesn’t pass through any occupied cell. (This is
because the complement of our X-tree must be a connected set.) But if any even cell
is unoccupied then all four of its even neighbors must be occupied (since, otherwise,
one of its corner points would be disconnected.) This now implies that the only even
cells P can pass through are doubly even ones, and never a doubly odd one.

[ ] L] [ ) ) ° ° °

. NANNAY .
d R (21,2 j)-unoccupied

. NANNNNY .

‘_
- ® [ ° [
/ <
(2u,2v) . o N
FIGURE 11

Now, focus on a doubly even cell (2u,20) just inside the boundary which P tries to
pass through on its way to the outside. Since (2u,20v) must be unoccupied (because P
is going through it), all of its neighbors must be occupied. In particular, this forms a
barrier with the adjacent occupied boundary cells which prevents P from going
through to the outside here. But this happens wherever P tries to reach the outside
since all the even cells on the boundary are occupied. Thus, P can never reach the
outside, which is a contradiction. Hence, the hypothesis that there is an unoccupied
doubly even cell is untenable, and the assertion is proved.

Therefore, in order to know what our X-tree is, we only have to know which
(additional) doubly odd cells are occupied. Look at the picture for an 8 X 8 array in
Ficure 12.

g

N N

a 4 X 4 array

(shaded) doubly odd cells in an 8 X 8 array

FIGURE 12
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Next to the 8 X8 array, a 4 X 4 array is drawn. Notice that there is natural
correspondence between the array of 9 doubly odd cells (shaded) in the 8 X 8 and the
array of 9 cells in the 4 X 4. The key observation now, which is not hard to check, is
that the set of occupied doubly odd cells in the 8 X 8 must correspond exactly to an
X-tree in the 4 X 4 array. Namely, consecutive doubly odd cells in the same row or
column cannot both be occupied (or we get a cycle), and all points in the array must
be joined together.

In effect, the doubly odd cells on the 8 X 8 array form a “stretched-out” version of
all the cells of a 4 X 4 array.

More generally, this argument shows that if an a X b array has an X-tree then
a=2A, b=2B, and, furthermore, the smaller A X B array must also have an X-tree.

We now can apply this repeatedly (similar to Fermat’s method of infinite descent,
except that we stop at 2 X 2) to get the conclusion that only 2 X 2’ arrays can have
X-trees. This completes the proof of the Theorem.

Concluding Remarks

Of course, the main open problem is to determine the minimum Steiner trees for all
(or even infinitely many) square lattices. It is embarrassing that even for 2¢ by 2’
arrays, we still can’t prove optimality for the “obviously” correct X-tree.

If we assume the distance between adjacent vertices in the lattice is 2, then it is not

hard to show that any Steiner tree (minimum or not) has length of the form Va + by3
where a and b are integers (possibly negative). Conceivably, this fact could be of
help in proving optimality in some cases.

An interesting related question is to use only the 2 X 2 minimum Steiner trees and
the smallest possible number of single edges (called E’s) to form a spanning tree of
G(m, n). We know that for m and n both large enough, only a bounded number of
E’s are ever needed. When m is small however (where we can assume m < n), we
may need arbitrarily many E’s. Some examples of this are illustrated in Frcure 13.

m=1

*—eo—o—o—9 === ,

E E E E all E’s
m=2

M Ingll E’s needed
m=3

. Only 2 E’s needed

FIGURE 13
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m=4
m=35
m=26
m=7

FIGURE 13 (con’t)

Inzll E’s needed

A bounded number
of E’s needed
(at most 4)

At most
2 E’s needed

At most
4 E’s needed

The authors would like to acknowledge the meticulous help of Nancy Davidson in preparing the figures

for this paper.



96

MATHEMATICS MAGAZINE

REFERENCES

1
2

3.

11.

12
13

E. Carlson, private communication.

F. R. K. Chung and E. N. Gilbert, Steiner trees for the regular simplex, Bull. Inst. Math. Acad. Sinica
4 (1976), 313-325.

F. R. K. Chung and R. L. Graham, Steiner trees for ladders, Annals of Discrete Math. 2 (1978),
173-200.

, A new bound for Euclidean Steiner minimal trees, Annals of the N.Y. Acad. Sci. 440 (1985),
328-346.

. E. J. Cockayne and D. E. Hewgill, Exact computation of Steiner minimal trees in the plane, Inform.

Proc. Letters 22 (1986), 151-156.
M. Gardner, Mathematical games, Scientific American (June 1986), 16-22.

. M. R. Garey, R. L. Graham and D. S. Johnson, The complexity of computing Steiner minimal trees,

SIAM J. Appl. Math. 32 (1977), 835-859.

. M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide to the Theory of NP-Complete-

ness, W. H. Freeman and Co., San Francisco, CA, 1979.

. E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Appl. Math. 16 (1968), 1-29.
. R. Kallman, On a conjecture of Gilbert and Pollak on minimal trees, Stud. Appl. Math. 52 (1973),

141-151.

J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc.
Amer. Math. Soc. 7 (1956), 48-50.

H. O. Pollak, Some remarks on the Steiner problem, J. Combin. Theory Ser. A 24(3) (1978), 278—295.
P. Winter, An algorithm for the Steiner problem in the Euclidean plane, Networks 15 (1985), 323-345.

Proof without Words:
Sum of Special Products

3(1:2+2:3+3:4+ - +n(n+1))=n(n+1)(n+2).

—Smoney H. Kune
Jacksonville University



