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Introduction

Get a hammer. Seriously, get a hammer. As an experiment, hold the hammer in front
of you with its head pointing up. Toss it upward (CAREFULLY!), end-over-end, and
catch it after one revolution. The orientation of the hammer when you catch it will be
the same as when you tossed it.

As a second experiment, hold the hammer in front of you with its head pointing
sideways, to the right. Toss the hammer upward, end-over-end, and catch it after one
revolution. This time, the orientation changes—the head pointed to the right when you
tossed it, but points to the left when you catch it!

Figure 1 Hammer juggling and unstable rotation

Many people suggest that this strange 1/2-twist in experiment #2 is due to the
asymmetry of the hammer’s mass distribution, but the same kind of thing will happen
with a book, or wallet, or any object with three distinct dimensions. (Try it! Use a
rubber-band to keep the wallet or book closed.) We don’t always see a half-twist (that
will depend on the particular orientation of the object when you release it), but we
almost always see a twist. Why? The answer is well known to the physics community,
but is documented primarily in their parlance. The following exposition explains this
phenomenon from a mathematician’s point of view. The governing equations will be
quickly derived, and the supporting linear algebra will be explored.

We assume that the reader has basic knowledge of multivariate calculus, and is
aware that eiφ = cos φ + i sin φ. We also assume that the reader is familiar with eigen-
values, eigenvectors, linear independence, and understands that a proper choice of ba-
sis will diagonalize a symmetric matrix M ∈ R

3×3.
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The basics

In this section we begin with simple definitions of basic vocabulary, cite of the gov-
erning equations of motion, and then proceed with the salient calculations. Proofs of
important assertions, and a derivation of the equations of motion are postponed un-
til later sections so that we can focus on answering the question of why the hammer
performs a half-revolution in Experiment #2 but not in Experiment #1.

Vocabulary

Angular Velocity Suppose an object is revolving about some particular axis, much
like a child’s spinning top. The angular velocity of the object, denoted by ω, is a
vector that points in the direction of that axis. The magnitude of ω is 2πγ , where
γ ≥ 0 is the number of revolutions per second. As you might infer from the example
of the spinning top, the angular velocity vector may change direction and length as
time evolves.

Newton’s Second Law Most people cite Newton’s Second Law as F = ma, which
isn’t quite right. Newton’s Second Law says that force is the instantaneous change
in momentum. In the case of linear force we write F = dρ/dt where ρ = mv is the
linear momentum of a mass m traveling with velocity v. In the case of angular force
and angular momentum we write τ = d L/dt where τ means torque and L denotes
angular momentum (discussed in detail later).

Euler’s equation For reasons that will be explained later, the governing equation of
motion is

τ = Mω̇ + ω × Mω, (1)

where M ∈ R
3×3 is a symmetric matrix and ω̇ denotes the derivative of ω with re-

spect to time. (This “dot notation” is used throughout the rest of the article to denote
differentiation with respect to time.) In later sections we’ll see that (1), called Euler’s
equation, is just a fancy restatement of the fact that τ = d L/dt .

Calculations Because the matrix M is symmetric, its eigenvalues are all real, and
eigenvectors associated with distinct eigenvalues are orthogonal. In fact, it happens
that all the eigenvalues of M are positive! In the case of the hammer, they’re also
distinct so we label them in increasing order: 0 < λ1 < λ2 < λ3.

Physicists refer to M as the moment-of-inertia tensor, and they often use the letter
I (for “inertia”) to denote this matrix. (We use M in this exposition to avoid confu-
sion with the identity matrix.) The eigenvalues of M are called the principal moments
of inertia, and their corresponding unit-eigenvectors are called the principal axes of
rotation. These unit-eigenvectors, which we’ll denote by p1, p2, and p3 respectively,
point along “the axes of” the object in question. For example, pull a textbook off of
the shelf. It has length, width, and height. The vector p1 points in the direction of the
length, the vector p2 points in the direction of the width, and the vector p3 points in the
direction of the height (see the figure, below). Notice that, listed in the order prescribed
by our indexing, the dimensions of the book are decreasing: length > width > height.
If you accepted the earlier invitation to try the experiment with another object (with
three distinct dimensions), you found that the rotation was unstable when the axis of
rotation was parallel to p2, which corresponds to the “middle” dimension. This will
always be the case, as we’ll see in a moment.
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Vectors p1, p2, p3 form an orthonormal basis for R
3, so any angular velocity can be

expressed as a linear combination of them: ω = α1 p1 + α2 p2 + α3 p3. (Recall that ω

may change with time, so the scalars α1, α2 and α3 are functions of time.) Moreover,
the matrix M is diagonal in the basis {p1, p2, p3}.

M =
⎡
⎣ λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦ .

So when the rotation is free from external torque and we use {p1, p2, p3} as our basis,
equation (1) becomes

λ1α̇1 + (λ3 − λ2)α2α3 = 0 (2)

λ2α̇2 + (λ1 − λ3)α1α3 = 0 (3)

λ3α̇3 + (λ2 − λ1)α1α2 = 0 (4)

Suppose the object in question (the hammer, in this case) were to rotate about the
axis p1. Then α2(0) = 0 = α3(0) and it follows from equations (2)–(4) that α2 and α3

stay zero. Of course, we see the same behavior whether we rotate about p1, p2 or p3.
But rotating about one of the principal axes—exactly—is highly unlikely, even if we
are meticulous in our efforts to make it happen. So what happens when the object in
question rotates about an axis that is very close to one of the principal axes?

Stable rotation Suppose ω is initially very close to p1. Then α2(0) ≈ α3(0) ≈
ε ≈ 0, so the second summand on the right-hand side of (2) is order ε2.

λ1α̇1 + (λ3 − λ2)α3α2︸ ︷︷ ︸
O(ε2)

= 0. (5)

The analogous terms in (3) and (4) are only order ε, so a linear approximation of
Euler’s equation is

λ1α̇1 ≈ 0 (6)

λ2α̇2 + (λ1 − λ3)α1α3 = 0 (7)

λ3α̇3 + (λ2 − λ1)α1α2 = 0 (8)

Equation (6) indicates that α1 is constant (or nearly so). This reduces the problem
to a system of two equations in two unknowns. Solving (7) and (8) for α̇2 and α̇3,
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respectively, gives us

(
α̇2

α̇3

)
=

⎡
⎢⎢⎣

0
(λ3 − λ1)α1

λ2

(λ1 − λ2)α1

λ3
0

⎤
⎥⎥⎦

(
α2

α3

)
(9)

which we write as the 2 × 2 system ẋ = Ax . The eigenvalues of A are

±i

√
(λ3 − λ1)(λ2 − λ1)α

2
1

λ2λ3
,

which we will denote by ±iφ. Suppose the associated eigenvectors are �a1, �a2 ∈ C
2.

Then, since these vectors are linearly independent, there are scalars c1, c2 ∈ C

such that c1�a1 + c2�a2 = (α2(0), α3(0))T . Note that c1 and c2 are “small” since
‖�a1‖ = ‖�a2‖ = |e±iφ| = 1 and α2(0) ≈ 0 ≈ α3(0). Now by defining x(t) = c1eiφt �a1 +
c2e−iφt �a2 we have

ẋ(t) = d

dt

(
c1eiφt �a1 + c2e−iφt �a2

) = c1

(
d

dt
eiφt

)
�a1 + c2

(
d

dt
e−iφt

)
�a2

= c1eiφt(iφ)�a1 + c2e−iφt(−iφ)�a2 = c1eiφt A�a1 + c2e−iφt A�a2

= A(c1eiφt �a1 + c2e−iφt �a2) = Ax(t)

The function x(t) solves (9) with the correct initial data so, since that solution is
unique, x(t) = (α2(t), α3(t))T . It follows that α2 and α3 not only start small but stay
small. That is, ω stays close to α1 p1.

In fact, ω revolves around p1 as the system evolves. It’s easy to follow through the
same calculations to derive the same behavior when the axis of rotation is close to p3,
but something very different happens when ω is initially near p2.

Unstable rotation If we begin with ω very near to p2, α1(0) ≈ 0 ≈ α3(0), so a linear
approximation of Euler’s equation is

λ1α̇1 + (λ3 − λ2)α2α3 = 0 (10)

λ2α̇2 ≈ 0 (11)

λ3α̇3 + (λ2 − λ1)α1α2 = 0. (12)

Equation (11) indicates that α2 is constant (or nearly so). This reduces the problem to
a system of two equations and two unknowns.

(
α̇1

α̇3

)
=

⎡
⎢⎢⎣

0
(λ2 − λ3)α2

λ1

(λ1 − λ2)α2

λ3
0

⎤
⎥⎥⎦

(
α1

α3

)
(13)

The coefficient matrix has eigenvalues

±
√

(λ2 − λ3)(λ1 − λ2)α
2
2

λ1λ3
,

which we denote by ±φ. Suppose the associated eigenvectors are �a1, �a2 ∈ R
2. Then

the solution to (13) is x = c1eφt �a1 + c2e−φt �a2, where c1 and c2 are chosen to achieve
x(0) = (α1(0), α3(0))T . It’s important to note that c2e−φt �a2 vanishes quickly but that
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c1eφt �a1 grows exponentially. That is, though α1 and α3 started small, they don’t stay
that way, and it’s exactly this instability that makes the hammer change its orientation.

Rolling up our sleeves

Now we undertake the task of supporting the assertions made about the matrix M (that
it’s symmetric and that all its eigenvalues are positive) and explaining Euler’s equation.
We begin by defining angular momentum and establishing its relationship to angular
velocity.

The relationship between L and ω Suppose a rigid body rotates about the line
through its center-of-gravity defined by the vector ω. Taking the center-of-gravity as
our origin, an atom at r j = (x j , y j , z j ) has a linear velocity of v j = ω × r j (see Figure
2). The angular momentum of that atom is defined to be L j = r j × m jv j , where m j is
its mass. That is, L j = m j (r j × (ω × r j )). Grinding through the cross products brings
us to

L j =

⎡
⎢⎢⎢⎢⎣

m j (y2
j + z2

j ) −m j x j y j −m j x j z j

−m j x j y j m j (x2
j + z2

j ) −m j y j z j

−m j x j z j −m j y j z j m j (x2
j + y2

j )

⎤
⎥⎥⎥⎥⎦

⎛
⎝ωx

ωy

ωz

⎞
⎠ . (14)

vj = ω x rj

rj

ω

L j = rj x vj

Figure 2 Angular velocity and angular momentum

The angular momentum of the entire object is just the sum of the angular momenta of
all its atoms. Summing (14) over all particles gives us

L =

⎡
⎢⎢⎢⎢⎣

∑
j m j (y2

j + z2
j ) − ∑

j m j x j y j − ∑
j m j x j z j

− ∑
j m j x j y j

∑
j m j (x2

j + z2
j ) − ∑

j m j y j z j

− ∑
j m j x j z j − ∑

j m j y j z j
∑

j m j (x2
j + y2

j )

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
This is the matrix M

⎛
⎝ωx

ωy

ωz

⎞
⎠ .

Defining M to be the coefficient matrix on the right-hand side, we can write L = Mω.
We remark that the symmetry of M is now apparent, but why are its eigenvalues always
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positive and why does it play a role in Euler’s equation? These questions are answered
in the remaining sections.

The eigenvalues of M We begin our investigation into the eigenvalues of M by writ-
ing

M = (‖�x‖2 + ‖�y‖2 + ‖�z‖2)I − AT A, (15)

where �x j = √
m j x j , �y and �z are the corresponding vectors of scaled y and z coordi-

nates, and A is the matrix whose columns are A·1 = �x , A·2 = �y, and A·3 = �z. That is,
M is a perturbation of the matrix (‖�x‖2 + ‖�y‖2 + ‖�z‖2)I , which has a single eigen-
value whose algebraic multiplicity is three. The effect of this perturbation on the set
of eigenvalues depends on the “size” of the perturbation. We measure the “size” of a
linear function L : R

3 → R
3 with the operator norm:

‖L‖∗
def= max

‖u‖=1
‖Lu‖, (16)

where ‖v‖ = √
v · v is the standard norm R

3. (The fact that a maximum is always
achieved follows from the Heine-Borel Theorem, which is usually taught in a course
such as Real Analysis. Its 1-dimensional version is known to calculus students as the
Extreme Value Theorem: A continuous function on a closed interval achieves an ab-
solute maximum value.) Before continuing, we suggest that the reader verify the fol-
lowing lemma.

LEMMA 1. Suppose A, B : R
3 → R

3 are linear operators. Then

1. ‖Ax‖ ≤ ‖A‖∗‖x‖
2. ‖AB‖∗ ≤ ‖A‖∗‖B‖∗
3. ‖A‖∗ = ‖AT ‖∗

Now let us suppose that u is a unit-eigenvector of M associated with the eigenvalue
λ. Then

λu = Mu = (
(‖�x‖2 + ‖�y‖2 + ‖�z‖2)I − AT A

)
u

from which it follows that AT Au = (‖�x‖2 + ‖�y‖2 + ‖�z‖2 − λ
)

u. That is, u is an
eigenvector of AT A. The strategy of our proof is to use this fact to show that∣∣∣∣ (‖�x‖2 + ‖�y‖2 + ‖�z‖2

)︸ ︷︷ ︸
anchor value > 0

−λ

∣∣∣∣
︸ ︷︷ ︸

distance from λ to anchor value

< ‖�x‖2 + ‖�y‖2 + ‖�z‖2,

from which it follows that λ > 0. For example, if it was the case that ‖�x‖2 + ‖�y‖2 +
‖�z‖2 = 5, showing |5 − λ| < 5 would imply that λ > 0.

Since ‖u‖ = 1, we have∣∣∣∣‖�x‖2 + ‖�y‖2 + ‖�z‖2 − λ

∣∣∣∣ =
∥∥∥∥ (‖�x‖2 + ‖�y‖2 + ‖�z‖2 − λ

)
u

∥∥∥∥
= ‖AT Au‖ ≤ ‖AT A‖∗

≤ ‖AT ‖∗‖A‖∗ = ‖AT ‖2
∗ (17)
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so the proof rests on our estimate of ‖AT ‖∗. For any unit vector, v,

‖AT v‖ = √
(�x · v)2 + (�y · v)2 + (�z · v)2

≤ √‖�x‖2 + ‖�y‖2 + ‖�z‖2. (18)

Note that equality could only occur in (18) if some unit vector v were parallel (or
antiparallel) to all three vectors, �x , �y and �z. But this could only happen if the object in
question were 1-dimensional! Restricting ourselves to 3-dimensional objects, we can
rewrite (18) as

‖AT v‖ <
√‖�x‖2 + ‖�y‖2 + ‖�z‖2. (19)

Since (19) is true for all unit vectors v, it’s true when ‖AT v‖ achieves its maximum
and, thus, ‖AT ‖∗ <

√‖�x‖2 + ‖�y‖2 + ‖�z‖2. Returning to (17), we have∣∣‖�x‖2 + ‖�y‖2 + ‖�z‖2 − λ
∣∣ ≤ ‖AT ‖2

∗ < ‖�x‖2 + ‖�y‖2 + ‖�z‖2,

from which it follows that λ ∈ (0, 2(‖�x‖2 + ‖�y‖2 + ‖�z‖2)]. That is, the eigenvalues of
M are positive.

Euler’s equation (explained) The final piece of the puzzle is Euler’s equation
which, earlier, we asserted was just a fancy way of saying that torque changes angular
momentum. When we first introduced the idea of torque we wrote

τ = d L

dt
. (20)

Equation (20) is correct from the point of view of an observer who is removed from the
application of torque and the resulting change in motion—physicists say that such a
person is in an inertial frame. But we’re not dealing with an inertial frame because our
coordinate system, {p1, p2, p3}, depends on M , which depends on the object which is
rotating. As the object rotates, so does our basis!

How do we write (20) from our point of view, at the center of the rotating body,
with a basis that’s rotating? The key is to imagine what an observer in an inertial
frame would see if, from our point of view in the rotating basis, we saw no change in
the angular momentum. Because our frame of reference is spinning, our observation
that L appears to be constant means that L is spinning about the axis of revolution at
exactly the same speed as the basis. So an observer in an inertial frame would record
the change in angular momentum as ω × L (see Figure 3). Using the subscript of 0 to
denote the inertial frame and the subscript r to denote the rotating frame, this thought
experiement allows us to write (20) from our point of view in the rotating frame:

τ =
(

d L

dt

)
0

=
(

d L

dt

)
r︸ ︷︷ ︸

our basis

+ ω × Lr︸ ︷︷ ︸
is spinning

. (21)

Finally, we use the fact that Lr = Mω. Notice that M depends on the physical charac-
teristics of the object but not on time, so we can rewrite (21) as

τ = Mω̇ + ω × Mω, (22)

which is Euler’s equation.
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ω

L
ω L

Figure 3 Change of L in an inertial frame

Conclusion

The last implicit supposition in our analysis was that the eigenvalues were distinct.
This, at least, is not always true. What would happen if two of the eigenvalues were
the same? What if all three were the same? What would that imply about the rotating
object?
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Proof Without Words: Sum of a Geometric Series via Equal Base Angles
in Isosceles Triangles

α2α
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α  4
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+ α

4
+ · · · =
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α

2n
= 2α
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