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THE MOAT PROBLEM. One cannot walk to infinity on the real line if one uses 
steps of bounded length and steps on the prime numbers. This is simply a 
restatement of the classic result that there are arbitrarily large gaps in the primes. 
The proof is simple: a gap of size k is given by (k + 1)! + 2, (k + 1)! + 3, ... 
(k + 1)! + (k + 1). 

But the same problem in the complex realm is unsolved. More precisely, an 
analogous question asks whether one can walk to infinity in Z[i], the Gaussian 
integers, using the Gaussian primes (henceforth, G-primes) as stepping stones, and 
taking steps of bounded length. The Gaussian question is much more complex 
because of the additional dimension. For example, there are arbitrarily large disks 
in Z[i] that contain only Gaussian composites (see [A, p. 119]; this also follows 
from our Theorem 4.1), but that has little impact on a trek to infinity for a walker 
who can, with luck, simply walk around the obstacle. 

This problem is sometimes called the Gaussian moat problem, since one way of 
establishing a walk's nonexistence is to present a sufficiently wide moat (region of 
composites) that completely surrounds the origin. 

The literature has often attributed the Gaussian moat problem to Paul Erdos. 
But in fact, the question was first posed by Basil Gordon in 1962 at the Interna- 
tional Congress of Mathematicians in Stockholm. There have been few published 
references to the problem since then: it seems to have been mentioned in only 
three books ([G], [Mo], [WI]) and two papers ([JR], [H]). A paper by J. H. Jordan 
and J. R. Rabung [JR] contains some computational results, and also the comment 
that Erdos conjectured that a walk to infinity does exist. Other authors have also 
attributed the problem to Erdos ([G], [H], [Mo]). But Erdos [El] recently confirmed 
that the problem was not posed by him and offered the opinion that the sought-after 
walk does not exist. Jordan and Rabung constructed a v'TU-moat; thus, steps of 
size 3 will not get a Gaussian prime-walker to infinity. In this paper we present two 
larger moats (4 and 18), as well as a computational proof that a 26 -moat exists. 
Thus, steps of length 5 are insufficient to reach infinity. The first author and 
Harold Stark [GS] have shown that, starting anywhere in the complex plane, and 
taking steps of length at most two, one cannot walk to infinity. Ilan Vardi [V] has 
shown that some reasonable probabalistic assumptions about the primes allow one 
to apply percolation theory to obtain heuristic reasons why walks to infinity using 
steps of bounded size should not exist. 

In Section 2 we summarize some definitions and facts about the G-primes. 
Section 3 contains several new Gaussian moats, and Section 4 contains results that 
were inspired by William Duke and questions of Gaussian prime geometry. 

2. BACKGROUND. The ring of Gaussian integers, denoted Z[i], consists of 
integers in the field Q(i); they have the form a + bi where a, b e Z and i = - . 

Like other rings that enjoy unique factorization, Z[i] admits a well-defined 
notion of primality. And there is a simple characterization of the G-primes as 
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follows: 

(1) If a, b =A 0, then a + bi is a G-prime if and only if a2 + b2 = p, where p is 
a prime. 

(2) A Gaussian integer of the form a or ai, a e Z, is a G-prime if and only if a 
is a prime and l al-3 (mod 4). 

Further, the units of Z[i] are + 1 and + i. The norm of a Gaussian integer 
x + iy is defined to be N(x + iy) = X2 + y2. Therefore, to restate (1), a Gaussian 
integer a + bi (a, b =A 0) is a G-prime if and only if N(a + bi) is a prime. 

Two Gaussian integers v, w are associates if v = uw where u is a unit. In such a 
case, N(v) = N(w). It is well known, and not hard to prove, that a prime 
p 1 (mod 4) can be written uniquely as the sum of two squares. For example, 
5 = (? 1)2 + (?2)2. Thus, there are exactly eight G-primes corresponding to the 
prime 5, namely + 1 + 2i and +2 + i. Hence, up to associates, there are exactly 
two distinct G-primes corresponding to each prime p 1 (mod 4). For proofs of 
these assertions, see [R, p. 188], [HW, ch. XV], and [Z]. 

Geometrically, what does all of this mean? Specifically, given a G-prime q 
satisfying N(q) = p, where p is a prime congruent to 1 (mod 4), consider the circle 
of radius C/ centered at the origin: the eight G-primes corresponding to p lie, 
two in each quadrant, on this circle. Similarly, if a Gaussian integer x + iy is 
composite, then +x + yi and +y ? xi are composite as well. Thus the geometric 
structure of the Gaussian integers has an induced eightfold symmetry. Figure 1 
shows all G-primes of norm less than 1000, or alternatively, those G-primes that 
are within Euclidean distance C1000 of the origin. Suppose we wish to prove that 
one cannot walk to infinity using steps of length k or less. We can try, as did 
Jordan and Rabung, to find a moat of composite Gaussian integers, of minimum 
width k and completely traversing the first octant (the sector 0 < 0 < -I/4). More 
precisely, we want the moat to cut a swath from the positive x-axis to the line 

_ 

*., 

Figure 1. G-primes of norm less than 1000. 
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y = x. The eightfold symmetry allows us to reflect this moat across the y = x line, 
across the y-axis, across the y = -x line, and so on, until it completely surrounds 
the origin. Such a moat proves that a trek to infinity requires a step of length 
greater than k. To prove that one cannot walk to infinity it would therefore suffice 
to show that moats of width k exist for any k. This has not been done, but we offer 
evidence in support of the conjecture in the next two sections. 

Finally, we mention another unsolved problem [G, A8] that has some bearing on 
the Gaussian moat problem. It has been conjectured that 

lim ( ?- 1/) =0, 
n ---* 

where Pn denotes the nth prime. If the conjecture is true, then the circles upon 
which the G-primes lie become more crowded as one travels farther away from the 
origin in the complex plane. Thus there would be no chance of finding a truly 
annular moat (i.e., a moat that is the region between two circles) of composite 
Gaussian integers. 

We next turn our attention to the construction and existence of new Gaussian 
moats. 

3. NEW GAUSSIAN MOATS. Thanks to modern software (Mathematica?), we 
have been able to investigate the distance-k graph in the G-primes to much greater 
depths than has been done before. We are considering the graph whose vertices 
are the G-primes, and having edges that join all pairs of G-primes at distance k or 
less. By the k-component (of the origin) we mean the set of G-primes that are 
connected to 1 + i by a path in the distance-k graph. 

(a) (b) 

Figure 2. Two small moats: (a) shows the set of G-primes reachable using steps of size at most 2; (b) 
shows the reachability set in the case of steps of size at most 8. The dots show the G-primes that are 
not in the components. The left image spans the region of norm at most 60 while the right one goes to 
norm 115. These images, when rendered in color, are quite pretty; contact the second author if you are 
interested in a color image. 

Note that the edges in these graphs can have limited shapes. Ignoring the 
eightfold symmetry, and also ignoring the (1,0) step that emanates only from 
several very small G-primes, the edges have vector representations that can be only 
(in order of length): (1, 1), (2, 0), (2, 2), (3, 1), (4, 0), (3, 3), (4, 2), (5, 1), (4, 4), (5, 3), 
and so on. If a2 + b2 is an odd prime then the number obtained by changing the 
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parity of one of a or b is necessarily composite, and this explains why the distances 
under discussion take on the values x/I, v4, v8, and so on. 

The finiteness of the 4/0U-component was proved in 1970 by Jordan and Rabung 
[JR]. Figure 3 contains an image of the entire component (requires only a few 
minutes of CPU time on a Macintosh PowerMac?). The first octant part contains 
31,121 primes, so we resort to a compression trick. Each pixel represents a grid 
(3 x 3 in this case), and the pixel is darkened if it contains at least one reachable 
G-prime. One can easily make a color image in which the color used is a function 
of the number of reachable G-primes in a given grid. 

100 200 300 400 500 600 700 800 900 

Figure 3. An image of the 4_0-component in the first octant; it contains 31,121 G-primes. 

It takes much more computing effort to get the 4-component (347,638 G-primes) 
or 4_8-component (2,386,129 G-primes). Figures 4 and 5 show these. For more 
details on the use of Mathematica to get these images, see [WI, ch. 9] and [W2]. It 
is really quite simple. We proceed level-by-level, where the G-primes of level n are 
those that can be reached in n steps, but not fewer. To get level n + I one simply 

. .~~ .~ L 

1000 2000 3000 

Figure 4. An image of the 4-component in the first octant; it contains 347,638 G-primes. Each pixel 
represents a 15 x 15 grid and is blackened if the grid contains a single reachable G-prime. 
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Figure 5. An image of the 4T8-component in the first octant; it contains 2,386,129 G-primes and each 
pixel represents a 25 x 25 grid. 

looks at the neighbors of the primes in level n that are not in level n or level 
n - 1. Thus it suffices to keep only two levels in memory, and that is why we can 
examine a graph with over 2,000,000 vertices without ever keeping more than 
several hundred primes in memory at once. Table 1 summarizes the data we 
obtained in getting these moats. 

To deal with the 26-component, we adopted a completely different approach. 
We started at 4,000,000 on the real axis and moved up to 4,000,000 + 4,000,000i in 
small sections, showing by brute force that every path that comes into this vertical 
line from the left yields only dead ends on the right. We chose 4,000,000 after 
some preliminary investigations at 2,000,000 and 5,000,000; a low starting point will 
work in theory, but the large distances to the dead ends will slow down the 
computation too much. A typical part of the computation is shown in Figure 6. We 
do use some refinements to the naive method and are grateful to Larry Carter for 
some useful speedup suggestions. Once the 450 line is reached, the finiteness of the 
VY-component is proved; of course this implies that the V2i0-component is finite 
too. This sort of computation yields only upper bounds on the reachable distance, 
as opposed to the exact extent of the component of the origin. 

TABLE 1. Data for diverse G-prime walks from the origin by walkers of various sizes. The data describe 
only the first-octant part of the components. For c6 we examined 9,631,177 primes and determined 
that a bound on the reachable distance is 5,586,757. For the Vi2 case we traced around the border of 
the component until it was completely surrounded. 

Component of Farthest Farthest Total size 
origin point distance ofthe 

using distance reached reached component 

1 2 + i 2.23 2 

C2 11 + 4i 11.70 14 

2 42 + 17i 45.31 92 

C8 84 + 41i 93.47 380 

4_0 976 + 311i 1024.35 31221 
4 3297 + 2780i 4312.61 347638 

g1_8 8174 + 6981i 10749.4 2386129 

f2f0 109677 + 64268i 127120 Finite 

42_6 < 5586757 Finite 
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4000000 4000015 4000030 

Figure 6. A typical dead-end computation working right from the x = 4,000,000 line. Many similar 
computations show that all such walks (that start near the line from 4,000,000 to 4,000,000 + 4,000,000i, 
and using steps of size 26 or less) die out fairly quickly. This proves that a 46-moat must exist. 

Going straight up, as opposed to angling left, might seem inefficient given that 
we expect the density of primes to be roughly constant on circles. But it has the 
great advantage of being parallelizable: One computer can investigate the fourth 
million while the first computer chugs away on the first million. Thus each of us 
handled at least a million imaginary parts. In all, we examined 9,631,177 G-primes. 
This approach is also intriguing because one could imagine a much larger compu- 
tation being done over the world-wide web, with dozens or hundreds of investiga- 
tors looking at different regions simultaneously. One could surely prove that a 
v12I-moat exists in this way, but it hardly seems worth the effort since it appears 
clear from these computations that moats of any size exist. A much more impor- 
tant step would be a heuristic justification of the conjecture that arbitrarily large 
moats exist, using reasonable assumptions about the distribution of the primes. 

4. STROLLING ON GAUSSIAN LINES. We know that the Gaussian moat prob- 
lem could be solved by finding moats of arbitrary width in the first octant. Analytic 
number theorists have raised what appears to be an equally hard question: Can 
one find any sector in which one cannot walk to infinity on G-primes in steps of 
bounded length? A variation on this is: Is there a line in the complex plane on 
which there is a G-prime walk to infinity? We prove here that the answer is NO. 

Theorem 4.1. Let L be a line that contains at least two distinct Gaussian integers and 
let k be a positive integer. There is a Gaussian integer w on this line such that all 
Gaussian integers within a distance k of w are composite. 

Three preliminary results are needed for the proof of Theorem 4.1, one of 
which is the following elementary lemma. 

Lemma 4.2. Let L be a line that contains at least two distinct Gaussian integers. 
There are Gaussian integers m 0 0 and b such that the real and imaginary parts of m 
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are relatively prime and the Gaussian integer z is on this line if and only if there is an 
x E Z such that z = mx + b. 

Proof: Let z1 and Z2 be two Gaussian integers on the line L. Let b = z1, let 
MO = Z2- z1, and let d be the greatest common divisor of the real and imaginary 
parts of mo. Finally, let m = mo/d = u + vi. It follows that the real and imaginary 
parts of m are relatively prime, and every point on the line is of the form mx + b 
where x is a real number. 

Let z be any Gaussian integer on the line L. There is a real number x such that 
z = mx + b. We need to show that x is an integer. We know that mx = ux + vxi = 
z - b is a Gaussian integer; as a consequence, ux and vx are integers. Since u and 
v are relatively prime, there are integers r and s such that ur + vs = 1. Hence 
uxr + vxs = x is an integer. It is straightforward to see that if x is an integer then 
z = mx + b is a Gaussian integer. U 

We also need the Chinese remainder theorem (henceforth, CRT) for Z, which 
we state next; see [A, p. 117] for a proof. 

Theorem. Suppose ai, mi E Z are such that the mi are relatively prime in pairs. Then 
there is a solution to the system of linear congruences 

X-a,(mod ml), X a2(modM2), X as(modms). 
Moreover, if a is a smallest such solution (in magnitude), then all solutions are given by 
{a + Mn:n E ZI, where M is the product of the moduli. In other words, the solution is 
unique modulo M. 

Finally, we need to know that the CRT is valid for Z[i], which it is. One way of 
proving this is to make straightforward modifications to the proof in [A, p. 117]. A 
more general proof (also valid in other rings of integers) is given in [ZS, p. 279]. 

Proof of Theorem 4: Let m and b be two Gaussian integers that define the line L 
as per Lemma 4.2. 

We consider three cases. First, assume that L is horizontal. Then m is real, and 
so we may take m = 1 because its real and imaginary parts are relatively prime. 
Let b1 be the imaginary part of b and let K = Ib11 + k. Our goal will be to find an 
integer w0 with the property that each Gaussian integer z such that Iz - wol < K 
is composite. From this it quickly follows that if w = w0 + b1i, then w is on L, and 
if z is any Gaussian integer with the property that Iz - wI < k, then z is 
composite. 

Since the set of all Gaussian integers z with the property that I z I < K is a finite 
set, say with N elements, we may index its elements so that Zj = uj + vji with u 
and vj being integers for j = 1, . . ., N. Assume that z1 = 0. 

Inductively define a system of linear congruences x aj (mod bj), for 1= 
1,..., N so that 

(1) each a1 and bj is an integer, 
(2) each bj is larger than 1, 
(3) the bjs are pairwise relatively prime, and 
(4) zj + aj and bj are not relatively prime. 

Start with a1 = 0 and b1 = 4. The four conditions are satisfied. Now suppose 
that a1,..., a_1, b1, .. ., bj1l have been defined. Recall that Zj = uj + vji. Next, 
we must find an integer si so that si + v1i has a G-prime factor p1 with the 
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property that pjpj is larger than the product b1 ... bj-1. To accomplish this, let 
sj = v^M, where M is the product of all G-primes q such that lql < b1 .. bj-1. 
Then we have sj + vji = vj(M + i), and the magnitude of any prime factor of 
M + i is larger than b1 .. bj11, as desired. Choose one such factor pj. Now let 
bj = pjpj and aj = sj - uj. Conditions (1), (2), and (3) are trivially satisfied. 
Condition (4) follows from the identity z; + a- = sj + vji. This concludes the 
induction. 

The CRT guarantees an infinite set of solutions to this system of linear 
congruences. Suppose w is one of these solutions and let P = Hl b1. We may 
assume that w is larger than P + K. Let j be one of the integers 1, . . ., N. Since b 
and Z? + a1 are not relatively prime, there is a G-prime qj that divides them both. 
Since w is a solution to the system of congruences, it follows that w + Zj-a1 + 
zj (mod b1) and thus w + zj O(mod qj). Since the magnitude of w + Zj is larger 
than P (1w + z, I> IwI - Izj I> (P + K) - K = P) and since the magnitude of qj 
is less than P (qj is a prime factor of the composite number P), the quotient 
(w + zj)/qj has magnitude larger than 1. Hence, w + Zj is not a G-prime for 
j= 1,...,N. 

In the second case, we assume that the real part of m is 0. The argument is 
nearly identical to that of the first case. 

In the final case, assume that both the real and imaginary parts of m are 
nonzero. As in the first case, let Zj = uj + ivj, j = 1,..., N index the Gaussian 
integers z with lzl < k. Assume that z1 = 0. 

Inductively define a system of linear congruences x zj (mod bj) so that 

(1) the bjs are distinct G-primes, 
(2) bj = Uji + vui where 0 < vj < Uj (i.e., the bjs are in the first octant and are 

not real) 
(3) m and bj are relatively prime. 

Let b1 be a G-prime that satisfies conditions (2) and (3), and let the first linear 
congruence be x z1 (mod b1). Then the three conditions are satisfied. Suppose 
Z1, . . ., zj-1 bl ,..., bj-l have been defined. Find a G-prime bj with the property 
that lbjl is larger than the product Imb1 ... bj 1- and satisfies condition (2). 
Condition (1) is satisfied because IbjI > IbiI for i = 1, .. ., j - 1, and condition (3) 
is satisfied because 1bjl > Iml. This concludes the induction. 

The CRT for Gaussian integers guarantees an infinite set of solutions to the 
system of congruences. Let wo be one of these solutions and let P = Hl bj. We 
claim that the real and imaginary parts of P are relatively prime. To see this, 
suppose p is a nontrivial prime divisor of the real and imaginary parts of P. Then 
p divides P. Now, p's G-prime factorization is either just p (if it is 3 (mod 4)) or 
(r + si)(r - si) (if p is 1 (mod 4)). But this factorization must be a subset of the list 
of bjs, a contradiction since by condition (2) each bj has positive imaginary part. 

Also, P is relatively prime to m by condition (3). As a consequence, there are 
Gaussian integers r and s such that mr - Ps = wo- b. Hence mr + b = Ps + wo. 
Let r = rO + r1i and P = PO + P1i. Since PO and P1 are relatively prime, there are 
integers to and t1 such that_Pot1 + P1to = r1. Let t = to + t1i. It follows that for 
any_integer n, r - tP - nPP is an integer and therefore that wn = P(s - tm - 

nmP) + wo = m(r - tP - nPP) + b is a point on the line L. Choose n so that 
wn I> IPI + k to ensure that Iwn + zjI > IPI (because Iwn + zj > wI n- Izi > IP1 
+ k - k = IPI). Note also that wn wo (mod P). Thus wn + Zj wo + zj (mod bj) 
for each j = 1, . . ., N and hence (wn + zj)/bj is a Gaussian integer. Moreover, the 
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magnitude of (wn + zj)?bj is larger than 1 since bj is a divisor of P. It follows that 
w, + Zj is composite for each j = 1, . . ., N. This concludes the final case. U 

Finally, we turn to a related problem in G-prime geometry. In [E2], Erdos 
showed that 

limsup[min(d, +1, dn+2)/log n] = 0, 

where dn = Pn+ - Pn. That is, d,, is the difference between the (n + 1)st and nth 
primes. This theorem was subsequently generalized by H. Maier [Ma]. A more 
simplistic statement of this result is that for any k > 0, there is a prime p that lies 
at the center of a neighborhood of radius k in which all integers except p are 
composite. These neighborhoods are intervals on the real axis. What about the real 
G-primes? Can we isolate real G-primes in 2-dimensional neighborhoods as well? 
The answer turns out to be YES, as we show next. 

Definition 4.3. A G-prime q is k-isolated if all Gaussian integers in the disk of 
radius k around q are composite, with the exception of q. 

Theorem 4.4. For any k > 0 there is a real k-isolated G-prime. 

One final result is needed for the proof of this theorem, namely Dirichlet's 
theorem on primes in arithmetic progression, which can be found in [A, ch. 7]. 

Dirichlet's Theorem. Suppose a and b are relatively prime integers. Then the arith- 
metic progression {a + bn:n E ZI contains infinitely many primes. 

Proof of Theorem 4.4: We give only an outline of the proof since it is similar to the 
proof found in the first case of Theorem 4.1. I. Vardi [V] has proved this theorem 
independently. 

We find a solution x0 to a similar system of linear congruences except that we 
replace the first congruence with x 3 (mod 4), and we require that ai and bi are 
relatively prime. Since all solutions to this system of congruences are of the form 
xo + nP, and since x0 and P are relatively prime, we invoke Dirichlet's theorem to 
find a prime, p, as a solution. This prime is a G-prime because p 3 (mod 4). U 

Using Mathematica to do a search, we found the smallest real k-isolated 
G-primes for k = 3, 4,..., 17, as shown in Table 2. The 14-isolated G-prime, which 
is also 15-, 16-, and 17-isolated, is shown in Figure 7. 

TABLE 2. Smallest real isolated G-primes. 

Real Nearest Nearest 
k-isolated G-prime G-prime 

k G-prime to the left to the right 

3 79 71 83 
4 523 503 547 
5 563 547 571 

6 7559 7547 7583 
7 14243 14207 14251 
8 35759 35747 35771 

9 50023 49999 50047 
10 849143 849131 849179 
11 959207 959183 959219 

12 4100479 4100443 4100527 
13 16441543 16441519 16441583 
14 20785207 20785187 20785267 
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20785167 20785207 20785247 

Figure 7. 20785207 is the smallest real 14-, 15-, 16-, and 17-isolated G-prime. 

5. THE ROAD AHEAD. Having examined several walks in the Gaussian primes, 
the reader might be wondering about other venues for such trips. Similar questions 
about walks to infinity may be asked for the finitely many imaginary quadratic 
fields of class number 1; see [H]. These are the imaginary quadratic fields whose 
rings of integers are equipped with unique factorization; see [S, p. 295] and [H1W, 
ch. XV]. Hence, because the geometric structure of such rings in the complex 
plane is similar to that of Z[i], most of the techniques of this paper should extend 
to those rings as well. 

In cases where there is no unique factorization, one looks at prime ideals. What 
are the interesting moat questions for these rings? What answers would one 
expect? Can computational methods be applied? 

While the fundamental question about walks to infinity may prove to be 
resistant to a rigorous proof, there are numerous other geometrical properties that 
one can investigate. The Gaussian primes are a visually appealing set, and we 
imagine that computation and visualization will play an important role in unravel- 
ing their mysteries. 
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