X CONTENTS

POISSON’S EQUATION IN A HYPERCUBE:

DISCRETE FOURIER METHODS,
EIGENFUNCTION EXPANSIONS, PADE
APPROXIMATION TO EIGENVALUES
Peter Henrici, 371

INDEX, 413

THE PERFIDIOUS POLYNOMIAL

James H, Wilkinson

1. INTRODUCTION

The problem of finding the roots of polynomial equations has
played a key role in the history of mathematics and indeed our very
concept of numbers has been steadily broadened by consideration
of it. The part it has played might be summarized as follows.

Starting with the positive integers which man, with uncharacteris-
tic generosity, ascribes to the Almighty, negative integers were
introduced so that the equation x+ p=0 has a solution. The
requirement that px — ¢ = 0 should have a solution then led to the
introduction of the field of rationals ¢/p. This provided a very rich
number system but, although it has the impressive property that
there are an infinite number of rationals between any two of them,
consideration of the equation x2=2 showed it to be inadequate.
There are no integers p and g such that p2/g? = 2. This led to the
concept of irrational numbers, though it must be admitted that
there was still a long way to go before the concept of the real
continuum was put on a firm basis. Finally the equation x?+1=0
led to the introduction of the ‘number’ / such that i2=—1 and,
thence, to the concept of complex numbers a + ib.

1

2 James H, Wilkinson

There then came what is perhaps the most momentous ‘dis-
covery’ in the history of mathematics. With the field of complex
numbers we are at the end of this particular line of development.
There is no need to extend our number system further in order that
polynomial equations of higher degree should have solutions. The
Fundamental Theorem of Algebra asserts that every polynomial
equation with complex coefficients has a complex root. All early
proofs of this theorem made some appeal to intuition though a
proof by Gauss is particularly convincing. It depends on the
assumption that if a closed curve encircling the origin one or more
times is shrunk continuously to a point it must at some stage pass
through the origin. Attempts to put the intuitive element in these
proofs on a firm basis provided a valuable stimulus to mathemati-
cians.

In parallel with these developments there were attempts to find
explicit expressions for the roots of polynomial equations. For
linear and quadratic equations this was trivial and the problem was
solved for the cubic and quartic by the sixteenth century. Related
results for the quintic proved to be elusive and, finally, it was
shown by Abel and Galois that it is impossible, in general, to
express the solution of equations of the fifth degree and higher in
terms of radicals. Again work in this area yiclded particularly rich
dividends for mathematics in general.

In classical analysis too, polynomial functions have for long
occupied a key position. In many respects they may be regarded as
the simplest functions having any real character; they can be
differentiated and integrated an arbitrary number of times. In spite
of their simplicity they have the remarkable property expressed in
the approximation theorem of Weierstrass—“Any continuous func-
tion may be approximated to any desired accuracy by a polynomial
of sufficiently high degree.”

The history of mathematics has, in a sense, contrived to make
mathematicians feel ‘at home’ with polynomials. This is well il-
lustrated by Weierstrass’ theorem. Why should one be interested in
the fact that continuous functions can be satisfactorily approxi-
mated by polynomials? The assumption is implicit in the theorem
that this is a desirable thing to do since polynomials are such
agreeable functions.

THE PERFIDIOUS POLYNOMIAL 3
2. NUMERICAL EVALUATION OF POLYNOMIALS

The cosy relationship that mathematicians enjoyed with poly-
nomials suffered a severe setback in the early fifties when electronic
computers came into general use. Speaking for myself 1 regard it as
the most traumatic experience in my career as a numerical analyst.

The early electronic computers had no hardware facilities for
computation in floating-point arithmetic and operation in this
mode was effected by means of subroutines. Having constructed
such a set of subroutines for our first electronic computer, PILOT
ACE, I'looked for a simple problem on which to give them a field
trial. Computing the largest real root of a real polynomial equation
seemed tailor-made for the exercise. Moreover since polynomials of
even quite a modest degree can assume values covering a very wide
range over the interval including their zeros, the use of floating-
point arithmetic is particularly appropriate. I was well aware that
there were practical difficulties associated with the problem but
imagined that they were mainly confined to equations with multiple
roots or pathologically close roots. I felt that it was not the time to
concern myself with these difficulties and I decided, therefore, to
make two programs with quite limited objectives.

The first took n prescribed real numbers z; >z, > +++ >z, and
constructed the explicit polynomial T1(x — z,) by multiplying the
factors together. This in itself provided a simple test of the basic
subroutines.

The second took the resulting polynomial f(x) and, starting with
the initial approximation z; +1, used the Newton Raphson iterative
method

xr+l:xr_f(xr)/f’(xr) (21)

to locate the largest root.

It was my intention to avoid difficulties by choosing well
separated z;. An attractive feature of this problem is that the
background theory is trivial. With exact computation the approxi-
mations tend monotonically to the root z; and convergence is
ultimately quadratic.

After using these programs with complete success on examples of
order three, I decided to give them their first genuine test. I took

4 James H. Wilkinson

n =20 and the polynomial with roots 20,19,...,2,1 and submitted
it to the Newton Raphson program expecting immediate success.
To my disappointment the iteration continued indefinitely and no
root emerged. Since the polynomial was clearly devoid of all guile, I
assumed that there was an error either in the floating-point sub-
routines or the two polynomial programs.

Failing to find an error in the subroutines and verifying that the
computed polynomial was correct to working accuracy, I returned
to the zero finder and examined the successive iterates x, and the
computed values f(x,). The x, appeared to be virtually random
numbers in the neighbourhood of 20 while the computed values
were of arbitrary sign and were in any case much larger than the
true values. (Notice that the true values of f(x,) could be computed
directly via T1(x, — z;) since we were in the privileged position of
knowing the roots a priori.)

Now the interesting thing about this behaviour is that it would
not have been difficult to predict, but it was so unexpected that it
was some time before I could bring myself to attempt the analysis;
I was convinced that either one of the programs or the computer
was at fault.

3. ELEMENTARY ERROR ANALYSIS

We wish to avoid any detailed rounding error analysis in this
article. Fortunately a very simplified analysis is quite adequate to
demonstrate that the observed behaviour is to be expected. Let us
concentrate on the evaluation of the polynomial

f(z2)=z"+a, z" '+ -+ +az+ag [31)

at z = x. This was achieved via the algorithm

5, =1
s, =%S,41+a, (p=n-1,...,1,0), (3.2)
f()(f) =5p

THE PERFIDIOUS POLYNOMIAL 5

usually known as nested multiplication. We note in passing that
2" +s, 12" 2+ -+ + 5,2 + 5, is the quotient polynomial and s,
is the remainder when f(z) is divided by (z — x).

Consider now a hypothetical computation in which every opera-
tion is performed exactly except the addition involved in the
computation of s,. We assume that an error ¢ is made at this stage.
This error could be the result of a ‘blunder’ or a mere rounding
error. The computed 5§, satisfy exactly the relations

 ta, (p#k), (3.3)

(Of course the §; will be the same as the 5, until we reach §,; after
that they will differ.) Clearly

f(x)=f(x)+ex*, (3.4)

This is an exact relation and is in no sense dependent on ¢ being
small. The performance is clearly dependent on the relative sizes of
|f(x)| and [|ex*|. It will appear later that when x is in the
neighbourhood of 20, the most dangerous term, in the case when e

arises from a rounding error, is s;5, S0 we concentrate on the case
k=15.
Suppose x = 20+ y where |y| <1, then

f(x)=yA+y)2+y) - (194 y) =19y =1.22x10'Yy
(3:)

while
ex!? = £(20)" = 3 10%%. (3.6)

W_e now have to decide the order of magnitude of e. This error
arises when we attempt to compute

X516+ ays (3.7)

6 James H. Wilkinson

and the coefficient a5 in our polynomial lies between 10° and 10'°.
In floating-point arithmetic on the PILOT ACE the mantissa had
30 binary digits, roughly the equivalent of 9 decimal digits. Hence,
since a5 requires ten digits for its representation, the rounding
error involved in its mere representation may be as large as 5 units!
If |x3,4| < |ays| (as, in fact, it is), the rounding error made in this
addition is also of that order. Taking & to be 5 then, we have

ex15 =1.5x102, (3.8)

If y really is appreciably less than unity, then from (3.5) and (3.8)
|f(x)| is far smaller than |ex'?|. Even when y=0.1 the error is
some 10* times as large as the true value. The computed value of
f(x) is completely dominated by this single rounding error. Since it
could be positive or negative we would expect the computed values
to be of random sign and far larger in value than the true values. In
general there will be rounding errors in the computation of each s,
and on a nine-digit decimal computer no accuracy can be achieved
in a computed value for any x in the range of, say, 12 to 22. It may
readily be verified that when y=10"% seventeen decimals are
required in the computation in order to guarantee that even the sign
of f(x) is correct. This is a very disappointing result and is all the
more surprising since twenty is quite a modest degree; for a
polynomial equation of, say, degree 100 with a similar distribution
of roots the computational requirements are prohibitive. However
the implications of the trivial error analysis we have just given are
even more severe, as we shall show in later sections.

4. BACKWARD ERROR ANALYSIS

Let us return now to the equations defining the 5, and consider
the true computing process with rounding errors made in every
arithmetic operation. The computed values 5, satisfy the relations

=1
EP:pr+1+(ap+elp+ezp), (4.1)
5o="1(x),

THE PERFIDIOUS POLYNOMIAL 7

where &, is the rounding error made in the multiplication and e,
is the error made in the addition. Equations (4.1) are exact rela-
tions; in practice we shall not know ¢, and ¢,, but we shall have
upper bounds for them in terms of the computed precision, [x5,, |
and |a,|. We have bracketed a, with ¢, and ¢,, in order to
highlight a simple property of the 5,. Equations (4.1) state that the
computed sequence is an exact sequence corresponding to a poly-
nomial with coefficients a,+¢,, +¢,, for precisely the relevant
argument. Although the observation is almost trivial, it is of pro-
found practical importance. It shows that all the errors made in the
computation are precisely equivalent in their effect to perturbing
the original coefficients by ¢, +¢,, and then performing the
computation exactly. This is one of the simplest examples of a
backward error analysis; it 1s so named since it reflects back all the
rounding errors made in the course of the computation as equiva-
lent errors in the data. Although basically a simple concept, many
are uneasy when first introduced to it. There is a tendency to worry
about the effect of errors in one 5, on the computation of subse-
quent values. From the point of view of a backward rounding error
analysis this is irrelevant; such an analysis makes no comment on
the errors in the §, though it may be used subsequently to obtain
bounds for them. Once we have admitted the perturbations in the
data then the computed values are exact. There are several ad-

vantages in this form of analysis.

(i) It puts the rounding errors made during the computation
on the same footing as the original errors in the data. In
practice the data will seldom be exact so that one must of
necessity consider the effect of errors in them.

(ii) It reduces the problem of determining the errors in the
solution to that of the effect of perturbations in the data.
Perturbation theory has been extensively studied in classi-
cal mathematics and hence there is a rich body of experi-
ence on which to draw,

(iii) The third advantage may be described as follows. Suppose
we have a problem with data elements ¢; and we can show
that the computed solution is exact for data ¢;(1+¢;) and
give bounds for |¢;|. The size of these bounds for the |g]

8 James H. Wilkinson

provides a basis for assessing the performance of the algo-
rithm in the presence of rounding errors.

In connexion with (iii), the following considerations are of partic-
ular relevance. In any algorithm all of the data elements ¢, must be
used at least once, ie., they must take part in some arithmetic
operation. In general that operation will involve a rounding error
and the effect of that error will be that we have effectively used
¢;(14n,) rather than ¢, where |n;| is bounded by the relative
precision & of the basic computer operations. Hence it is virtually
impossible for any practical algorithm to do better in general than
to give the exact results for data ¢;(1+ ¢;) where the |¢;| can take
values up to & In so far as each ¢; and its successors take part in a
large number of operations, even a very stable algorithm is likely to
give much larger values of ¢, than .

Now the remarkable thing about nested multiplication is that in
spite of the fact that it can provide such poor computed values of
f(x) it is extremely stable in the sense we have described and is
particularly so on precisely the example we discussed in section 2.
In fact we shall show that each f(x) is exact for a polynomial with
coefficients a;(1+ ¢;) with bounds on |¢;| only marginally greater
than the computer precision. Let us assume for the moment that
la,| > Ixs .| really is true. It is not our intention in this paper to
mdulge in any detailed rounding error analysis since this tends to
be indigestible. Instead we shall make our point by illustrating what
happens on a six-decimal digit computer. Let us assume that the
exponent of a, is k and the exponent of x5, is, say, kK —3. Then
we may write

a, =10%(.uqu,usuusug) (4.2)
X5,.1=10%(.000 v;0,030,05 06|07 0505010011012) (4.3)

where the u; denote the six decimal digits in a,. The exact value of
X3, (note that in a backward error analysis we are not concerned
with the fact that §,, is in error) is a twelve-digit number with an
exponent three less (by our assumption); hence when aligned with

THE PERFIDIOUS POLYNOMIAL 9

it starts with three zeros. The v, represent the twelve digits, In
practice the product x5, ; will be rounded, giving an error bounded
by % in the digital position of v,. The addition then takes place and
the sum is rounded. The rounding at this stage is bounded by 1 in
the digital position of wu,, or just possibly one digit lower if
cancellation takes place (N.B., one digital position at most can be
lost by cancellation). Hence the bound for e, |+ |e,,| is only
marginally greater than 1 in the last digit of the computer represen-
tation of a,. This must be regarded as a best possible result.

It is not difficult to justify the assumption that |x5,, 4| <|a,| for
an x in the region of interest. This is because (with exact computa-
tion) the s, are the cocfﬁcwnts of the quotient polynomial when
f(z)is dmded by z—

Our conclusion is that there is no alternative algorithm which is
likely to give better results than nested multiplication since a
relative perturbation of up to 7 in the last digit of each a; is
virtually inevitable.

In Table 1 we give the computed values of f(z)=(z—1)(z—2)

-+(z—12) for a range of arguments in the neighbourhood of 10,
These were obtained using floating-point computation with a
mantissa of 46 binary digits. The polynomial of order 12 rather
than 20 was used because some of the coefficients of the latter have
too many digits to be represented exactly on a 46 binary digit
computer.

Notice that the computed values of f(z) for values of z from
10+27% to 1042~ are all roughly the same size and of unpre-

TaBLE 1

z Computed f(z) True f(z)
10+1x2-4 +0.63811 0.16501 x10~°
10+2x2-4 +0.57126 Dominated 0.33003x10°¢
10+3x2-42 —0.31649 by 0.4950510~° | Almost linear
10+4x2-4 ~0.45823 rounding 0.66007x 10~ ¢ \ over whole of
1042-2% L 7%2~9 429389 errors 0.27048 X 102 { this interval
10+2°B47%27%2 40.70396 0.86518 107!
10+271 1 7%2-9 1033456 x 10" 0.27685 x 10*
10+27 1B 47279 1£0.89316x102 0.88608 x 102

10 James H, Wilkinson

dictable sign. The contribution made by the rounding errors swamps
the true value. It is not until we reach z=10+2"1* that we are
sufficiently far from the root at 10 for the value of f(x) itself to
dominate the rounding errors. The size of the computed values is
perfectly predictable. The most dangerous term turns out to be
agz®. In fact, ay = 749463 and hence the contribution made by the
rounding error when we compute sy is bounded by

7.50x10" _ 7.50x10"
2% 7.04X107

274 X 749643 X 10® (approximately) =

+1.00. (4.4)

Accordingly, we can expect the rounding errors to contribute
something of the order of magnitude of unity to the computed
value of f(z) and it is therefore only when the true f(z) is
substantially larger than this that we have any correct significant
figures. The table deserves careful study. Since 10 requires 4 binary
digits for its representation, 2% is the value of the least significant
digit on a 46-digit computer for any number in the neighbourhood
of 10. Evaluation at x =10 gives no rounding errors so the com-
puted value is equal to the true value, ie., zero. Accordingly the
first four arguments were taken to be the four successive computer
numbers following 10 itself. For these f(z) is of the order of 107°
and this is completely swamped. Next we chose arguments which
were essentially 10+27%, 10+27%, 10+27 %, 10+27" but in
order to avoid the danger of atypical roundings each of these was
augmented by 7X27%. With the third of these arguments f(z) is
just large enough to rise above the level of the rounding errors and
f(z) has one correct decimal digit; with the fourth argument f(z)
has reached 102 and the computed f(z) now has rather better than
two decimals of accuracy. It may be verified that for all eight values
of the argument the error is of order unity with the sort of variation
one might expect from the random fluctuations. Had we attempted
the exercise with the polynomial (x —1)(x —2)--- (x —20) on the
same computer, the rounding errors would have dominated the
computed value over most of the range z +12 to z =22.

THE PERFIDIOUS POLYNOMIAL 11
5. SENSITIVITY OF THE ROOTS

So far we have concentrated on what might be regarded as the
rather unexciting problem of evaluating f(z), though we are pri-
marily concerned with finding the roots of f(z)=0. However, if
changes in the least digit in the coefficients a; completely change
the exact value of the polynomial for a given argument, it is obvious
that the implications for the roots must be very serious. At this
point we turn to perturbation theory and ask ourselves “What is
the effect on the roots of a perturbation of a; by &a,?”

Let us denote the roots of the original polynomial by x,. If ¢ is
sufficiently small the root x; becomes x ;+ 8x; where

10x;| = |ea,x; /f"(x;)|
+leax;/ [T (x;—x;)|. (5.1)
i#j

For the polynomial we have discussed it can be verified that the
greatest sensitivity is that of the root 15 (which is x4) with respect
to a perturbation in a,5. For this we have

|0xg| = |eays '1515/5!14I|, (5.2)
and since a,5 =1.67 X 10°, this gives
|8x4] = 0.7 X 10", (5.3)

Even with & as small as 107* the perturbation is 0.7 and this is so
large that the first order theory is obviously inadequate.

The implications of this are quite calamitous. All coefficients of
our polynomial from a5 to @, require more than 9 decimal digits
for their representation. Hence on a nine-digit computer even the
’Pest possible representations of each of these coefficients will
Involve a rounding error and this will correspond to a value of ¢
between +%107° In fact the PILOT ACE program for computing
the polynomial performed extremely well; whenever all the given
values x; were of the same sign the computed coefficients were, in

12 James H, Wilkinson

general, correct to working accuracy. Unfortunately, the exact roots
of the computed polynomial differed wildly from the given x,. We
illustrate this in Table 2 by giving the roots of the polynomial
equation (z —1)(z —2) - - - (z — 20)—27 %z = 0, which differs from
the original polynomial only in the coefficient of z'°. The true ay, is
210, which requires 8 binary digits for its representation; on a
30-binary digit computer the perturbation 2~ ** therefore represents
a unit in the first position beyond the end of the computer
representation of ;. It will be seen from the table that the smaller
roots are scarcely affected but by the time we reach the root x =7
the perturbation has become substantial, while the ten roots from
10 to 19 have become five complex conjugate pairs; the roots 18
and 19, for example, have become 19.5- -+ +(1.9- - -)i. Perturba-
tions in a,5 and a, are even more devastating in their effect.

6. IMPLICATIONS OF THE ERROR ANALYSIS

We now turn to the implications of the results of sections 2 to 5
for practical numerical analysts. Polynomial equations arise in very
many branches of ‘applied mathematics’, using that term in its
widest sense. However, these equations do not present themselves
directly in explicit polynomial form. Perhaps the most important
illustration of this is provided by the algebraic eigenvalue problem
which arises in connexion with vibration problems in physics,
chemistry and engineering. Here the polynomial equation is in the
determinantal form

det(AI—A4)=0, (6.1)
TABLE 2
Roots of (z —1)(z —2) -+ - (2 —20)—2~ 22'% = 0 correct to 9 decimal places
1.00000 0000 6.00000 6944 10.09526 6145 +0.64350 0904
2.00000 0000 6.99969 7234 11.79363 3881 +1.65232 97281
3.00000 0000 8.00726 7603 13.99235 8137 +2.51883 00701
4.00000 0000 8.91725 0249 16.73073 7466 +2.81262 4894
4.99999 9928 20.84690 8101 19.50243 9400 +1.94033 0347

THE PERFIDIOUS POLYNOMIAL 13

which for an n X n matrix gives a monic polynomial equation of
degree n; however, the primary data are the elements of A. Now it
was perfectly natural for mathematicians to approach this problem
by devisi_ng algorithms which would give coefficients of the explicit
polynomial corresponding to det(AI — A), ie., the characteristic
polynomial of 4. This had the advantage of reducing the volume of
data from the n” elements of A4 to the » elements of the characteris-
tic polynomial. However, the real incentive to the development of
such algorithms was that it reduced the problem to the solution of
an explicit polynomial equation, and this was felt to be a highly
desirable transformation. Although attempts were made to analyse
the effect of the rounding errors made in the algorithm on the
accuracy of the computed coefficients of the explicit polynomial
form,‘ the desirability of this form does not seem to have been
questioned. Almost all of the algorithms developed before the 1950s
for dealing with the unsymmetric eigenvalue problem (i.e., prob-
lems in which 4 is unsymmetric) were based on some device for
computing the explicit polynomial equations.

So ‘far we have based our exposition of the numerical problems
assor_:l_atcd with computing the roots of polynomial equations on a
Specﬁic polynomial of degree twenty. This polynomial now enjoys a
certain notoriety; it is sometimes referred to as ‘Wilkinson’s re-
markajbie polynomial’ and the opinion is quite widely held that
the:re_m something unusual about it. This is a particularly disap-
pointing development. The polynomial was first used by me quite
by ch_ance; it was in fact the first polynomial of order 20 that came
to mind; so, far from trying to invent a particularly intractable
polyqonﬁal, I used it precisely because I imagined (quite wrongly)
that it would be free from any numerical difficulties. It has the
ad\fantage that the orders of magnitude of f(x) and f’(x) may
casily be determined in terms of factorials.

_The really disturbing fact is that it is quite typical of polynomials
Wlt_h real coefficients and real roots and, indeed, many polynomials
Wwhich arise in practice behave much worse than this. As an experi-
ment I once took some 100 eigenvalue problems of order 25 for
which I had found the eigenvalues by an algorithm that is known to
be very stable with respect to eigenvalues. Knowing the eigenvalues,
I then computed the minimum accuracy to which the explicit

14 James H. Wilkinson

polynomial would need to be computed in order to ensure that it
would give the eigenvalues correct to 5 decimals. (This would be a
reasonable requirement in practice.) In every single case it would
have been necessary to obtain the coefficients correct to more than
20 decimals and for many of the examples a much higher accuracy
would have been necessary.

Again it should be emphasized that the polynomial (z —1)(z —2)
.+ (z —20) is not a ‘difficult’ polynomial per se. 1 have sometimes
been asked what precision of computation was necessary in order to
determine the roots in Table 2 to 9 decimal places. This question is
asked in the mistaken belief that this must be a difficult numerical
problem. The ‘difficulty’ with the polynomial [1(z — i) is that of
evaluating the explicit polynomial accurately. If one already knows
the roots, then the polynomial can be evaluated without any loss of
accuracy. The roots in Table 2 were computed using a zero finder
and evaluating the function directly by means of the expression
T1(z —i)—2 22", Eleven decimal computation was perfectly ade-
quate to determine the roots quoted.

Practical computer users sometimes find it difficult to believe
that there can be any justification for determining the coefficients
of an explicit polynomial to high accuracy when the primary data
are known to much lower accuracy. The fallacy in this argument

may be exposed by quite a simple example. Consider the de-

terminantal equation

1+¢—A &
det i ey — A] =0. (6.2)

The explicit polynomial form is
N —(2+e+e)A+(1+eg)(1+e)—ee,=0 (6.3)

and the roots are

(2+¢ + ;zz)i((sl—-.t:z)l+4£3.-3‘$)1"’2

5 (6.4)

THE PERFIDIOUS POLYNOMIAL 15

Observe that under the square root we have only second-order
terms in the g;, the potential first-order terms cancel out. If the &,
are of the order of 107° the two roots differ from unity b);
quantities of order 10~%. Random perturbations of order 10~° in
the e, make changes of order 10~ ° in these roots. However, random
independent perturbations of order 10~% in the coefficients of the
explicit pf)lynomjal make perturbations of order 10~ in the roots.
Perturbations in the ¢, in (6.2) produce perturbations in the explicit
polynomial (6.3) which are so correlated as to make their effect on
the roots far less important. Unfortunately, rounding errors made
in the coefficients are inevitably uncorrelated in general.

Determinantal equations of the type det(4 —AI)=0 are com-
monly su-:':h that the roots are relatively insensitive to independent
perturbations in the a;,. This may be true even when the roots
include close clusters. In fact when A4 is symmetric the roots are
well-conditioned in this respect, however sensitive the roots of the
corresponding explicit polynomial equation may be. The numerical
insiatgi!ity introduced in transforming to the explicit polynomial
equation is an induced instability.

7. AMELIORATION OF ILL-CONDITIONING

The sensitivity of the roots of explicit polynomial equations is
somc_lhing which is inherent in that mode of representation. All
algo?'nhms which involve rounding errors are, in general, doomed
to give results of disappointing accuracy relative to the computer
precision when used to deal with an ill-conditioned polynomial.

It is patural to ask whether the ill-condition can be removed by
some 'su:nple transformation of the variables. The answer is that
sometimes it can but the transformation itself must be performed to
high accuracy because, as we have remarked, the transformed
polynomial will be exactly related to a polynomial (g, + ¢,)z’ with
¢ at best of the order of the precision used. -

Al_l interesting example in this respect is provided by the poly-
nomial equation

23 —3.000000222 +2.9999997z —1.0000004 =0. (7.1)

16 James H, Wilkinson

This polynomial is very close to (z —1)? and, hence, the roots can
be expected to be very sensitive to random perturbations in the
coefficients such as will occur in the evaluation of the polynomial.
It is attractive to make the transformation z—1=w and thus to
obtain a cubic equation in w which no longer has close roots. Now
the standard algorithm for determining the coefficients of the
transformed polynomial uses repeated division by z—1, the
successive remainders providing the coefficients. As we have re-
marked, the process of dividing by z —a is precisely the same as
evaluating the polynomial at z=a. Now if the transformation is
performed using standard 8-decimal digit, floating-point arithmetic
the resulting polynomial equation is

w?—2%10" w2 —=7x10""w—9Xx10~"=0, (7.2)

and this provides accurate roots. This would seem to contradict the
claim that the transformation must be performed in higher preci-
sion but that is an illusion. The fact is that no rounding errors occur
in this reduction, so we may regard it as having been done to
arbitrarily high precision even though we appeared to be using only
8-decimal digit computation. Had we been foolish enough to make,
say, the transformation w =2z —1.0000123, then rounding errors
would have occurred and these would have been just as damaging
as those arising in the use of the original polynomial.
Representation of (7.1) in the form

(z-1)’=10""(22% +3z +4) (7.3)

also enables one to compute the roots accurately via the iterative
procedure

(z,,,=1)’ =107"(222 +3z,+4), (7.4)

provided care is taken to select the same branch throughout for
iteration to a specific root. Again this is possible because the
transformation from (7.1) to (7.3) has been performed exactly.

THE PERFIDIOUS POLYNOMIAL 17
8. MULTIPLE ROOTS

The equation (z —1)(z —2)---(z —20)= 0 was adopted initially
precisely because it has ‘well separated’ roots. The objective was to
avoid the known difficulties associated with multiple roots or root
clusters. Since the numerical problems proved to be unexpectedly
severe, it is pertinent to ask whether the selected polynomial
equation can be thought of as in any sense related to one with
multiple roots.

_ In fact very small relative perturbations in the coefficients can
give an equation with multiple roots. To see this consider, for
example, the perturbed equation

(x=1)(x—=2)---(x—20)—ex'*=0. (8.1)

The roots of this equation occur at the points of intersection of the
u:urvc‘.ls5 y=f(x)=(x—1)x-2)--+(x—=20)=0 and y=g(x)=
+ex. The fi.l'st curve is symmetric about the point x=10.5,
crosses the axis at x=1i (i=1,...,20) and has peaks in between
Lhetse values, alternatively positive and negative, at the zeros of the
derivative. Consider now values of & of order 10 >. For values of x
from, say, 0 to 6, g(x) is very close to the x-axis compared with the
p_eaks of f(x), and the points of intersection of f(x) with g(x) are
v1rtqa]ly the same as the points of intersection of f(x) with the
x-axis. Hence (as we have already seen) the early roots are scarcely
aff?clcd. However, as x increases, g(x) increases quite rapidly
while f(x) continues to dissipate its energies by oscillating in sign.
When we reach values of x, say, from 14 to 17, g(x) is fully
comparable with |f(x)| even at the peaks of the latter. This is
illustrated in Fig. 1 for e=+(0.5)10"> and e= +(1.0)10°>. For
&= +(0.5)10"° the roots 14 and 15 have moved towards each other
10 a substantial extent as have also the roots 16 and 17. For
£= (1.0)1_0‘5 the roots originally at 14 and 15 have become com-
plex conjugate pairs and the roots originally at 16 and 17 have
g]most coalesced. For an e between these two values, y = g(x) will
J!LI{SI touch y= f(x), giving a double root between 14 and 15. A
i .;Bhll_y !arger value of & will produce a double root between 16 and

- Similarly, for negative e, a value between —(0.5)10"° and

18 James H. Wilkinson

—(1.0)10~° will give a double root between 15 and 16. Since
a,s = (1.67)10” these e represent relative pertu:bapons of the o_rder
of 10~ It is an instructive exercise to determine perturbations
which give two pairs of double roots and other combinations. A
more difficult question is the following.

Suppose we have a computer with an inade_quate word length for
the exact representation of the polynomxa]' (x —I)x Q)
(x —20), for example, a ten-digit decimal ﬂoz.umg-pou_lt computer.
The correctly rounded version of the polynomial equation hgs roots
which are very different from the true values. Df.termme _lh_e
ten-digit decimal polynomial such that its roots z; give the mini-

land2 y=+0510"%%"
3and4 y=+10"%"

5 y=f(x)

14 13 16 17

y=(x—1)(x—2)---(x—20) and y=k(107x*)
for x=141017

FiG. L.

THE PERFIDIOUS POLYNOMIAL 19

mum value of ¥|z, —i| (or any other appropriate measure of the
difference between the two sets of roots).

9. WELL-CONDITIONED POLYNOMIALS

Although it is important to realize that explicit polynomial
equations with ill-conditioned roots are remarkably common, not
all polynomials of high degree are like that. The polynomial equa-
tions

x"+1=0 (9.1)

are extremely well-conditioned for all values of n. A perturbation e
in any coefficient gives a perturbation of order e/n in all the roots.

Of particular interest for the following section are polynomirl
equations with roots a,a?,...,a". If we take a -!/2, n=20, w>
find that the coefficients vary enormously in ord f magnituc . ..
fact, in terms of orders of magnitude, the polynomual is

x20+xl?+2—1x18+2—4x17+2—8x16+2—13x ;+2—19x14
+2—26x13 +2—34x12 +2-43xll+2—53x10+2—64x9
+2—T6x8 +2—89x?+2—103x6 +2—118x5 +2_134I4
+2—151x3 +2—lb‘3‘x2 +2-139x+2—210 (92)

At first sight this appears to be an unsatisfactory state of affairs;
moreover there is a natural tendency to regard the roots as danger-
ously close with a cluster near zero. Such fears prove to be
completely unfounded. Small relative perturbations in all coeffi-
cients make correspondingly small relative perturbations in each of
the roots. Even the smallest root behaves well. Since rounding
errors made in evaluating a polynomial are always equivalent in
their effect to small relative perturbations in the coefficients, one
can predict that this polynomial equation will behave well. In fact
¢ven the rather unsophisticated program used on the PILOT ACE
Was capable of determining any one of the roots almost to full
working accuracy.

20 James H. Wilkinson

To establish this result we observe that for a perturbation ea, in
a,, the relative change in root x; is

|8x, /x,| ~ ela2 ™%/ (271 PQI), (9.3)
where
P=(2"'-27Y)@2 " -272)..- (27" -27")
0= 272 =277 271 =27). (94)
We may write
(P =27 M0 [(1-271)(1=27) -+ (1=277Y)]
Q=2 @-0[(1-2"1)(1-27%)--- (1=277)] (95)

and the bracketed expressions are both convergents to the infinite
product

(1-27"YH)(1-2"3)(1-27%)---. (9.6)
All convergents certainly lie between 1/2 and 1/4 and hence
6, /x,| < ela 2*t* where s =4i[41-2k—i]. (9.7)

For a fixed value of k this takes its maximum where i = 20— k, so
that

18x, /x| < ela, 24T IR A -k, (9.8)
However from (9.2) it may be verified that all a, satisfy
Iak]£4.2'%(20_")(21_“ (9.9)

and hence

|8, /x;| < 2%-e. (9.10)

THE PERFIDIOUS POLYNOMIAL 21

A relative perturbation of e in any coefficient can be amplified at
worst by the factor 2% though for most i and k this is an
overestimate since the above inequalities are quite crude. This
polynomial then is well-behaved and for smaller values of « its
behaviour is even better. However, such polynomials proved to
have a sting in their tails.

10. POLYNOMIAL DEFLATION

The Fundamental Theorem of Algebra asserts that every poly-
nomial equation over the complex field has a root. It is almost
beneath the dignity of such a majestic theorem to mention that in
fact it has precisely n roots. The latter result is regarded as trivial
and is usually mentioned only as an aside. When a root x, has been
found, the polynomial f(z) may be divided by z —x; to give a
quotient polynomial of degree n —1

f(2)=(z-x)q(z). (10.1)

By the Fundamental Theorem ¢(z) has a root and the process can
be continued to give the n roots.

I must have been subconsciously influenced by this attitude
because when I turned to polynomial deflation (as the above
process is called), I was not expecting substantial difficulties. Since
I knew by this time that the polynomial with roots 27/ was
well-conditioned, I used this polynomial as my first test. The largest
root 27! was found first and this had an error of only 1 in its least
significant digit. The approximation to the root 22 derived from
the deflated polynomial was of disappointing accuracy and later
roots proved to have virtually no relation to the correct roots even
as regards their orders of magnitude.

Again backward error analysis is an invaluable tool for demon-
Strating the cause of this difficulty. Suppose we have accepted a
value x, + ¢ as an approximation to x,. Let us consider the result of

performing the deflation process exactly using this approximation.
We have

f(z2)=(z=(x;+¢e))g(2)+r (10.2)

22 James H. Wilkinson

where g(z) is the deflated polynomial and r is the rernai_ndcr. In
practice, of course, r is ignored and work is continued with g(z).
Now, by our assumption, equation (10.2) is exact and hence

(z=(x,+¢€)gq(z)=f(z)-r (exactly). (10.3)

This equation implies that x, + & and the exact roots of g(z) are
those of f(z)—r, not of f(z) itself. However, from the Remainder
Theorem, r = f(x, + €) and since

f(2)=(z=x)(z= %) -+ (z2—x,), (10.4)

we have
f‘f(xf"e):5(-"1_-"2"'5)(-"1_)‘3"'5)"'(-’Cz“xn+5)-

(10.5)

Consider now the implications of this for a polynon..\ia,l equatio_n
with roots x,=2"' when the accepted approximation to x; Is
2-14+10"'° and, therefore, has an error only in the tenth decimal.
From (10.5)

e 8(2—1 -2"24¢)(27? —273+¢)--- (27! —2 "W 4y)
(e=10"1). (10.6)

Each of the terms in parenthesis is certainly greater than 272 and
hence

r>e2"%=10"12"%>2"7, (10.7)

With exact deflation the roots of g(z) =0 will be roots of f(z)—r,
which has the constant term 2~ 2'° — r instead of 2~*'°. However, r
is larger than 272 by a factor greater than 2'** =104, Since the
product of the roots of a monic polynomial equation is equal to the
constant term and this has been changed by an enormous factor,
the roots of ¢(z) cannot possibly give good approximations to the
remaining roots of f(z). It is hardly likely that when rounding
errors are made in the deflation process itself the results will be

THE PERFIDIOUS POLYNOMIAL 23

superior to those resulting from exact deflation with the approxi-
mate root.

On the other hand, suppose an approximation 2~ +¢ to 2%
with a low relative error has been accepted. We have now

r=f(270+e)=(2"0+e-2"1)(27 P +e—-272)
@ P4 e-2-1)e (10.8)

and we assume that e=10"'¢, which again corresponds to a relative
error of approximately one part in 10*°, We require an approxima-
tion to |r| and, fortunately, quite a crude bound will suffice. We
have certainly

r|<271:272.:.2719.10716 = 27190 1016 = 27210 1010,
(10.9)

Hence the constant term 2~ ?'° is changed by less than one part in
10'°, and we know that this has little effect on any of the roots.

Although this is a very well-conditioned polynomial, we see that
division by an approximate factor corresponding to the largest root
is disastrous even if performed exactly; division by an approximate
factor corresponding to the smallest root is completely harmless.
This analysis is entirely born out in practice. A similar result is true
in general for polynomials having roots of widely varying magni-
tudes.

The above argument suggests that roots should be found in terms
of increasing absolute magnitude. Unfortunately, with many of the
more efficient algorithms it is not easy to ensure that roots are
found in this order. It is natural to ask whether there is some
stratagem which overcomes this problem. In fact there is a very
simple solution.

It is a well-established tradition when dividing a polynomial of
degree n by an (exact) linear factor to obtain the coefficient of z" !
first and then those of z"72, z"3,... in succession. With an exact
factor and exact division there is, of course, no remainder. How-
ever, we could just as well start at the other end and find the
constant term first, followed by those of z, z2,... in succession;

24 James H. Wilkinson

again there will be no remainder. The quotient polynomials will, of
course, be exactly equal.

If « is merely an approximate root, these quotient polynomials
will not be exactly equal; the remainder will be a constant with the
conventional mode of division and a multiple of z" when the
division is performed in the reverse direction. Now we may think of
division in the reverse direction in the following terms. Suppose we
write z=w™!, then

f(z)=f(Q/w)=(agw"+aw" '+ - +a,)/w"=g(w)/w"
(10.10)

(z—a)=(1—aw)/w=(a'—w)a/w (10.11)
and if we write 8 = a ', we can think of dividing (w — f8) into
(agw"+aw" '+ - +a,).

If « is the largest root of f(z), then B is the smallest root of g(w).
If a large root of f(z) has been found, then clearly it should be
divided out in the reverse direction.

However, this still leaves us with the necessity of finding either
the largest root or the smallest at each stage. If we find one of the
inner ones, such as 27'° in our example, then neither quotient is
satisfactory. Suppose now we denote the two quotients by

b

n

—1zn_l+bn—lzn_2+ «oo + bz + by, (10.12)
and

6, 12 Yk g; g2 T ver AGyEAC, (10.13)

respectively. We could use a composite quotient using coefficients
b,_y,b,_2,..., b, and ¢,_y,¢,_5,...,¢o. Note that in dividing for-
ward, b,_, is found first and in dividing backwards, ¢, is found
first; hence it seems appropriate to use those terms which are
computed earlier in the two processes. Will there always be a good
choice of r, presumably different according to which root one

happens to have found?

THE PERFIDIOUS POLYNOMIAL 25

The answer to this question is a resounding ‘yes'. However, we
must be clear what we mean by this. There is a limitation on the
accuracy with which any root can be found even when iterating in
the original polynomial. This is a fundamental property of the
polynomial with respect to that root. The irreducible error in a root
is that corresponding to relative perturbations in the original coeffi-
cients which are a modest multiple of the computer precision. It
would be unreasonable to expect that the deflation process has
positive virtues that enable us to find ill-conditioned roots more
accurately after several deflations than by iteration in the original
polynomial, assuming a fixed precision of computation throughout.
In fact, by using the appropriate value of » when each approximate
root has been accepted, the accuracy obtained in each root is
almost equal to that attainable by iteration for that root in the
original polynomial.

It should be appreciated that if the original polynomial equation
is very ill-conditioned, the successive deflated polynomials will
usually become steadily better conditioned. When, for example, the
roots 1,2,...,15 of our notorious polynomial equation have been
found, the remaining quintic with roots 16,...,20 is very much
better conditioned even though this includes several of the worst
conditioned roots of the original. This improvement in the condi-
tion avails us little. When the first approximate root has been
accepted and the appropriate decomposition (with rounding errors)
has been performed, the deflated polynomial will be related to a
slightly perturbed version of the original. These perturbations,
small as they are, will already have severely damaged ill-condi-
tioned roots. Even if the remaining n —1 roots and deflations are
performed exactly from that point onwards we can never recover
from the loss of accuracy already inflicted.

However, there are circumstances in which this loss of accuracy
may not be serious. This is when our primary objective is to
produce a set of approximate roots X, such that [1(z — X,) is ‘close’
lo the given polynomial. A good iterative method for finding a
single root plus the composite deflation we have described achieves
Just this. Though the errors in the ill-conditioned roots will be
severe (except when the rounding errors happen, fortuitously, to be
benign) the errors in the complete set will be correlated in such a

26 James H. Wilkinson

way as to reproduce the original polynomial remarkably accurately.
For a detailed explanation of this and the details of composite
deflation the reader is referred to Peters and Wilkinson [7]. The
error analysis involved is not particularly complex but its presenta-
tion here would violate the policy adopted in this article. However,
a trivial example illustrates how this comes about.

Consider the polynomial equation

22 =2z2+1=0, (10.14)

which has z=1 as a double root. This root is accordingly fairly
ill-conditioned. If iteration is performed using six-decimal floating-
point computation then, say, x =1.00024 will be accepted as a root
since the computed value of f(x) will be exactly zero. Notice that
the smallest attainable computed value (other than zero) is 107°,
since the last step is to add xs; to ag, ie., to 1 to give sy. The
smallest value is attained when computed xs; = —0.999999. How-
ever, when deflation is performed (composite deflation is irrelevant
here) the computed quotient is

z —0.999760, (10.15)

and the second computed root is 0.999760. Both roots have sub-
stantial errors but

(z—1.00024)(z —0.999760) = z2 — 2z +0.9999999424
(10.16)

and the original polynomial is given to much greater accuracy than
are the individual factors. Such a phenomenon is referred to as
‘backwards stability’ and is of great importance in numerical
analysis.

11. CONCLUSIONS

The title of this article reflects my feelings in early encounters
with solving polynomial equations but perhaps it is a misnomer.
Polynomial equations may be said to have played an ‘instructive’

THE PERFIDIOUS POLYNOMIAL 27

role in the history of mathematics and could have continued to play
this role for numerical analysts in the period immediately following
the advent of electronic computers.

There was an intense interest in the effect of rounding errors at
that time but, unfortunately, it was focused primarily on matrix
problems, particularly the solution of systems of linear equations.
These problems had a superficial formal complexity which had the
effect of making their analysis seem rather difficult. This formal
complexity is completely absent from the problem of evaluating a
polynomial or even of locating a simple real root of a real poly-
nomial equation. Viewed in retrospect it is interesting that I used
backward error analysis both in polynomial evaluation and in
polynomial deflation almost, as it were, by accident. (The term
backward error analysis had not been coined at that time and it was
certainly not in use as a recognized tool.) Although I was astonished,
indeed affronted, by my experiences with simple polynomials, I was
rather pleased with the effectiveness of the analysis. Nevertheless it
did not impress me sufficiently to make me adopt similar policies in
the analysis of matrix problems. My conversion to backward error
analysis in a matrix context did not occur until several years later. |
had observed that for stable methods of solving the eigenvalue
problem the residual vector r defined by

r=Ax—Ax (11.1)

was of the order of magnitude of the computer precision times || A||.
Quite suddenly it occurred to me that this implied that

(A—rxT)x=Ax (11.2)

(assuming x is normalized so that x"x =1) and that A and x were
therefore exact for 4 — rx”, which is a ‘ very close neighbour’ of 4.
This did indeed ultimately persuade me consciously to adopt
backward error analysis as a working tool and it yielded rich
dividends almost immediately. By this time Givens [3] had already
used it quite specifically in his analysis of the reduction of a real
Symmetric matrix to tri-diagonal form by orthogonal similarities. It
is interesting that this did not lead to its explicit adoption by others
or indeed by Givens himself in the analysis of other algorithms.

28 James H., Wilkinson

For accidental historical reasons therefore backward error analy-
sis is always introduced in connexion with matrix problems. In my
opinion the ideas involved are much more readily absorbed if they
are presented in connexion with polynomial equations. Perhaps the
fairest comment would be that polynomial equations narrowly
missed serving once again in their historical didactic role and
rounding error analysis would have developed in a more satisfac-
tory way if they had not.

REFERENCES

1. G. Birkhoff and S. Mac Lane, 4 Survey of Modern Algebra, 4th Edition,
Macmillan, New York, 1977.

2. B. Dejon and P. Henrici (Editors), Constructive Aspects of the Fundamental
Theorem of Algebra, Proceedings of a symposium at the IBM Research Labora-
tory, Zurich-Ruschlikon, June 1967, Interscience, London, New York, 1969.

3. I. W. Givens, “Numerical computation of the characteristic values of a real
symmetric matrix,” Oak Ridge National Laboratory, ORNL-1574, 1954.

4. A. S. Householder and F. L. Bauer, “On certain methods for expanding the
characteristic polynomial,” Numer. Math., 1 (1959), pp. 29-39.

5. M. A. Jenkins and J. F. Traub, “A three-stage variable shift iteration for
polynomial zeros and its relation to generalized Rayleigh iteration,” Numer.
Math., 14 (1970), pp. 252-263.

6. F. W. J. Olver, “Evaluation of zeros of high degree polynomials,” Phil. Trans.
Roy. Soc., 244 (1952), pp. 385-415.

7. G. Peters and J. H. Wilkinson, “Practical problems arising in the solution of
polynomial equations,” J. Inst. Math. Appi., 8 (1971), pp. 16-35.

8. G. W. Stewart, “Some iterations for factoring a polynomial,” Numer. Math., 13
(1969), pp. 458-471.

9. J. H. Wilkinson, “The evaluation of zeros of ill-conditioned polynomials,” Part
I, Numer. Math., 1 (1939), pp. 150-166, Part II, Numer. Math., 1 (1959), pp.
167-180.

10. , “Error analysis of floating point computation,” Numer. Math., 2
(1960), pp. 319-340.

11. . Rounding Errors in Algebraic Processes, Notes on Applied Sciences No.
32, Her Majesty’s Stationery Office, London, 1963.

12. . The Algebraic Eigenvalue Problem, Oxford University Press, London,
1965.

NEWTON’S METHOD

Jorge J. Moré and D. C. Sorensen

1. INTRODUCTION

Many fundamental problems in science, engineering, and eco-
nomics can be phrased in terms of minimizing a scalar valued
function of several variables. Problems that arise in these practical
settings usually have constraints placed upon the variables. Special
techniques are required to handle these constraints but eventually
the numerical techniques used must rely upon the efficient solution
of unconstrained minimization problems.

Newton’s method plays a central role in the development of
numerical techniques for optimization. One of the reasons for its
importance is that it arises very naturally from considering a Taylor
approximation to the function. Because of its simplicity and wide
applicability, Newton’s method remains an important tool for
solving many optimization problems. In fact, most of the current
practical methods for optimization (e.g., quasi-Newton methods)
can be viewed as variations on Newton’s method. It is therefore
important to understand Newton’s method as an algorithm in its
own right and as a key introduction to the most recent ideas in this
area,

29

	Wilkinson
	perf 001
	perf 002.pdf

	perf 003.pdf

