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The Square Root of
two =1.41421 35623 73095 ...

Roses are red,
Violets are blue.
One point 414 ...
Is the square root of two.

only to have some light verse top

this article. The dots at the end of
the third line indicate that the decimal
fraction is endless and nonrepeating.
In other words, +/2 is irrational. Al-
though its decimal digits, like those of
other famous irrationals such as pi and
e, look like a sequence of random digits,
they are far from random because if
you know what the number is you can
always calculate the next digit after
any break in the sequence. Such
irrationals also should not be called
“patternless” because they have a pat-
tern provided by any formula that
calculates them. The square root of
two, for example, is the limit of the
following continued (endless) fraction:

I confess that I wrote the above jingle

From this continued fraction one
can derive rational fractions (fractions
with integers above and below the
linei that give | 2 to any desired accu-
racv. The sequence 1/1, 3/2, 7/5, 17/12,
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41/29, 99/70, 239/169, 577/408, 1303/
985 ... is sometimes called “Eudoxus’
ladder” after an ancient Greek as-
tronomer and geometrician. The frac-
tions are alternately higher and lower
than their limit, which is /2. Each
fraction is closer to /2 than its prede-
cessor. The best approximation with
numerator and denominator not ex-
ceeding three digits is 577/408. It gives
V2 to five decimals places. If a fraction
in this sequence is represented by a/b,
the next fraction will be (@ + 2b)/(a + b).
Note that on each “rung” of the ladder
the numerator is the sum of its denomi-
nator and the denominator of the pre-
ceding fraction.

David Wells, in his Penguin Dictio-
nary of Curious and Interesting Numbers
(pages 34-35) gives some strange prop-
erties of the multiples of /2. For ex-
ample, write in a line the multiples,
omitting the fractional part. For ex-
ample, 1 times /2, ignoring the deci-
mal digits, is 1. Twice /2, ignoring the
decimals, is 2. In this way you obtain the
following sequence: 1, 2,4, 5,7, 8, ....

Beneath this sequence put down the
numbers missing from the first sequence:

12 45 7 8 91112..

3 6 1013 17 20 23 27 30 ...

The difference between the top and
bottom numbers at each n'th position
is always twice 7.

Normal Numbers

Anynth root of a positive integer (in all
that follows “integer” will mean a posi-
tive integer) not itself an nth power is
irrational. Although all such irrational
roots have decimal digits that are nei-

ther random nor patternless, they are
all, so far as anyone knows, “normal.”
This means that if you specify any
pattern of digits, such as a single digit,
pairs of adjacent digits, triplets of ad-
jacent digits, and so on, in the long run
the pattern will appear with just the
frequency you would expect on the
assumption that the probability of find-
ing any given digit at any given place
is always 1/10.

The pattern need not involve adja-
cent digits. They can be spaced any way
you like. For example, you might con-
sider the pattern abc, where a and b are
separated by, say, seven digits, and &
and ¢ are separated by, say, 100 digits.
All tests so far to determine the fre-
quency of such patterns have shown
that all irrational roots, in any base
notation, are normal.

The most extensive tests for the
normalcy of certain irrationals have
been made for pi because pi has now
been calculated to hundreds of mil-
lions of digits, but similar tests of
other famous irrationals such as e
and the golden ratio have shown no
deviations from normalcy. I do not
know how far /2 has been calcu-
lated, though I have a reference to it
having been carried to more than a
million digits in 1971 by Jacques
Dutka, then a Columbia University
mathematician.

One might imagine that all
irrationals are normal, but it is easy to
see that this is not the case. A popular
example is the binary fraction
.10100100010000.... The number
clearly is not rational and just as clearly
is far from normal.
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Figure 1. An infinite descent proof that,/2
is irrational

v2 and Drowning at Sea

The discovery of irrational roots was
first made by the Pythagoreans, a se-
cret brotherhood that flourished in
ancient Greece. Their discovery of the
firstirrational number, the square root
of 2, was a milestone in the history of
mathematics. In geometrical form this
says that the diagonal of a unit square
is incommensurable with the square’s
side. No ruler, no matter how finely
graduated, can accurately measure the
two line segments. If the side of a
square is rational, the diagonal will be
irrational, and vice versa.

There are two legends about the
explosive effect of this discovery. One
is that a Pythagorean named Hippasus
was sworn not to reveal the discovery
because it shattered the Pythagorean
belief that integers accurately mea-
sure all things. Hippasus broke the
vow. As a result he was drowned at sea
either by suicide, murder, or by the
wrath of the gods—the legend has
many variations. The other legend
has the Pythagoreans celebrating their
great discovery by sacrificing many
oxen to the gods. The discovery of in-
commensurable line segments had a
profound influence on Platowhowrites
about it in his Laws.

Infinite Descent

The Greeks proved the incommen-
surability of a square’s side and diago-
nal by a clever “infinite descent” proof
using the diagram shown in Figure 1.
Assume that the side of the largest
square is commensurable with its di-
agonal. If so, each of the two line

6 Math Horizons April 1997

segments will be multiples of a unit
which we call 2. Draw a smaller square
of side b, choosing pointx so thata = c.
Side b of this square will be commen-
surable with its diagonal because each
is a multiple of k. Next we select point
y so that d = b. Again, the side and
diagonal of this smaller square will be
commensurable with respect to .

This process can be continued to
infinity as suggested by the fourth tiny
square. The sides of all these squares
cannot be zero, but at some point in
the endless construction we reach a
square with a side less than k. A length
less than & cannot be a multiple of %, so
we have encountered a contradiction
proving that our assumption, that the
side and diagonal of a square are com-
mensurable, is false. If the square’s
side is 1, the diagonal is /2 . We have
shown that /2 is irrational.

We can express the proof another
way. We seem to get an infinite series
of integers (multiples ofk) each smaller
than the previous one, but such a
series obviously must be finite.

Hugo Steinhaus, in the first chapter
of Mathematical Snapshots, gives a dif-
ferent geometrical proof by infinite
descent. It is based on the rectangle
shown in Figure 2. Its sides are in a
ratio such that if the rectangle is sliced
in half as shown, each half will be a
rectangle similar to the original one. If
the sides are labeled as indicated, a
and b will be in the same ratio as a/2
and b. The equation reduces to a* =
2b%, soif b =1, awill be /7.

Assume thata and b are commensu-
rable, each side a multiple of unitk. Of
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Figure 2. Another infinite descent proof.

course, k can be any unit, inches, cen-
timeters, or whatever.

In Figure 3 we have attached to the
long side of rectangle ab a congruent
rectangle that has been given a quar-
ter turn clockwise. This produces a
larger rectangle of sides & and (a + b).
by cutting two squares of side b from
this large rectangle we produce the
smaller shaded rectangle. Its sides are
b and (a — b). Because a and b are
integers, (a—b) must also be an integer.
Therefore the shaded rectangle must
have sides that are multiples of &.

We can repeat the procedure by
cutting two squares from the shaded
rectangle to create a still smaller rect-
angle, similar to the shaded one, with
sides that also must be multiples of %.
As in the previous proof, if this process
is continued we soon produce a rect-
angle with sides smaller than k. We
have reached a contradiction. The
procedure can be carried to infinity,
but one cannot have an infinite se-
quence of integers that keep getting
smaller and smaller. Therefore a and
b are incommensurable, and /2 is
irrational. Infinite descent proofs can
be given algebraic forms, many of

a+b

Figure 3



which generalize to proving that any
nth root not annth power is irrational.

For an application of the 1 by /2
rectangle to a magic trick involving
the repeated folding of a playing card,
see the chapter on rep-tiles in my
Unexpected Hanging and Other Math-
ematical Diversions. The rectangle is
called an order-2 reptile because it can
be cut into two parts each similar to
itself. British and European papers
usually have sides in 1 to /2 ratio so
that when halved, quartered, and so
on, the sheets remain similar.

Odds and Evens

The ancient Greeks also had an
elegant way of using the laws of odd
and even numbers to prove +/2 is
irrational. It can be expressed in nu-
merous ways, but the following seems
the simplest.

Let a stand for the hypotenuse of a
right isosceles triangle and b for its side.
We know from the Pythagorean theo-
rem that a® = 202 or a¥b®* = 2. The
fracuon a/b obviously is between 1 and
2. Assume itis reduced to lowest terms—
that s, its top and bottom numbers have
no common divisor other than 1. We
know b is greater than 1, otherwise a/b
would be an integer.

The right side of a* = 2b% is even,
therefore the left sidea? is also even,
anda is even because the square root
of any even number is even. Fora we

!

can substitute 2x where x is any inte-
ger. Squaring 2x gives 4x?, so we can
write 4x? = 2b%. This reduces to 2x* = b
The left side is even, therefore b2 is
even and b is even. Because botha and
b are even, each can be divided by 2.
This contradicts the assumption that
a/b has been reduced to lowest terms.
We have proved that a/b cannot be a
rational fraction between 1 and 2,
therefore /2 is irrational.

Euclid gave this proof in Book 10,
and Aristotle alludes toitin many places.
According to Plato in his dialogue
Theaetetus (section 147), Theodorus of
Cyrene, a brilliant philosopher and
geometrician, also proved the irratio-
nality of the square roots of all
nonsquares of 3 through 17. Alas, none
of his writings survive, so we don’t
know how he did it, or why he stopped
at 17. Incidently, Theodorus was ban-
ished from Cyrene because he doubted
the existence of the Greek gods. With
suitable modifications, parity (odd-
even) proofs of /2 can be generalized
to all nth roots of integers that are not
nth powers.

Each of the foregoing proofs is a
reductio ad absurdum or “indirect” proof
in which an assumption is made then
later proved false by a contradiction. A
whimsical indirect proof of the irratio-
nality of /2 is based on the final digit
of square numbers. It is easy to see that
this digit must be 0, 1, 4, 5, 6, or 9.
Consider again the equation a? = 207

Tllustration by Greg Nemec

where a/b is reduced to lowest terms, b
greater than 1.

The terminal digit of both a? and #?
must be one of the six listed above. On
the right side of a® = 2b% b* is multi-
plied by 2, therefore the final digit of
2b2 must be 0, 2, or 8. It cannot be 2 or
8 because there is no 2 or 8 as the last
digit of @2 The only match is 0. So 42
and 20* must each end in zero. It
follows that @ must end in 0, and b
must end in 0 or 5. In either case both
a andb are divisible by 5, contradicting
the assumption that a/b is reduced to
lowest terms. Hence a/b is irrational
and /2 1is irrational.

Similar terminal digit proofs of the
irrationality of /2 can be formulated in
other base notations. In binary nota-
tion, for example, the proof is unusually
simple. The left side of a* = 2b? termi-
nates in an even number of zeros and
the right side terminates in an odd
number of zeros.

Many elegant proofs of the irratio-
nality of /2 are based on the funda-
mental theorem of arithmetic which
states that every integer is the product
of a unique set of primes. Here is one of
the easiest to follow.

As before, we use the equation a® =
2b? where a/b is a rational fraction re-
duced to lowest terms, b greater than
1. The term «® must have an even
number of prime factors. Why? Be-
cause if a is the product of either an
odd or an even number of primes, its
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square will have twice as many prime
factors.

Consider now the right side of a? =
20 Itwill have an odd number of prime
factors because to the even number of
prime factors of b2 we add the prime
factor 2. We have produced a contradic-
tion because the number of prime fac-
tors for the two sides of the equation
cannot be even on one side and odd on
the other. It is not difficult to see that
the proof applies to the square root of
any prime, or to any integerwith an odd
number of prime factors.

Prime divisors provide asimple proof
that any square root not an integer is
irrational. We apply it first to \/2 . From
a* = 2b* we can derive the equationd? =
a*/2 which is the same as a times a/2. If
a prime divides the product of two
integersx andy, it obviously must divide
either x or y. Let a? and a be the two
integers whose product is a%2. There
must be a prime which divides 5? be-
cause b is greater than 1. This same
prime must divide the right side of the
equation, therefore it must dividea/2 or
a. In either case it divides a because if it
divides half of a, it will also divide a.
Contradiction! We have shown that a
prime divides both & and b, therefore
a/b cannot be a rational fraction re-
duced to lowest terms.

Substitute for 2 any integer whose
square root is not an integer and the
foregoing proof holds. With further gen-
eralizations the proof will apply to all nth
roots of integers that are not nth powers.

Another simple proof of the irratio-
nality of \/2 is based on inequalities. If
a/b is \/2 reduced to lowest terms, then
b is less than a, and a is less than 25,
therefore (¢ —b) is less thanb. Start with
a® = 2b% and make the following
changes:

a®—ab = 2b* - ab
ala —b) = b(2b - a)
a/b = (2b - a)/(a - b)

As we have seen, (g — b) is smaller than
b. We have contradicted the assumption
that a/b is reduced to lowest terms. This
proof also generalizes to any nth root of
any number not an nth power.

There are dozens of other ways to
prove the irrationality of the square
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roots of integers that are not squares,
many of which extend easily to nth
roots. They all come down to the fol-
lowing theorem: If a/b is a rational
fraction in lowest terms, b greater than
1, then any power of a/b will also be a
rational fraction that cannot be re-
duced to lower terms.

This can be proved by the following
argument involving prime factors. As-
sume that a/b, with b greater than 1, is
reduced to lowest terms. The prime
factors of a will have no factors in com-
mon with b, otherwise the common
factors cancel out and a/b is reduced.
Consider now the square of a/b. The
factors above the line will be the same as
before, each repeated twice, and the
same for the prime factors below the
line. There are still no common factors
to cancel. This means that the square of
a rational fraction reduced to lowest
terms is another fraction reduced to
lowest terms, so it cannot be an integer.
In brief, no integer not a square can
have a square root that is rational.

The argument obviously applies to
cubes and all higher roots. For ex-
ample, a*/b® is (@ X a X a)/(b X b X b).
This too is a nonreducible fraction
because there are no common prime
factors above and below the line to be
canceled. Is there any simpler, easier
to comprehend, way to show that nth
roots of integers not nth powers are
irrational?

When I was in high school and first
learned that /2 could notbe expressed
as a rational fraction, I couldn’t believe
it. I squandered many hours in study
periods trying to find such a fraction.
Eventually I convinced myselfitcouldn’t
be done, but today I have no memory of
how I proved it, if indeed I did. I like to
think it was one of the proofs given in
this article. It would be interesting to
know how many mathematicians, far
greater than I, had a similar experience
when they were very young.

Note that all the proofs in this ar-
ticle are reductio ad absurdum proofs.
They illustrate how powerful this type
of proofis. As G. H. Hardy put it in his
famous Mathematician’s Apology:

It is a far finer gambit than any

chess gambit: a chess player may

offer the sacrifice of a pawn or

even a piece, but a mathematician
offers the game. B
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