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veryone is familiar with the powers of two: 1,2, 4,8, 16,
E32, 64, 128, and so on. They appear with surprising fre-
quency throughout mathematics and computer science.
For example, the number of subsets of a finite set is a power of
two, as too is the sum of the entries of any row of Pascal’s
triangle. (Mathematically, these two statements are the same!)
The largest prime number known today is one less than a power
of two, a cube of tofu can be sliced into a maximum of 2" pieces
with » planar cuts, and every even perfect number is the sum of
consecutive integers from 1 up to one less than a power of two!
Here I have put together a dozen curiosities all about the pow-
ers of two. These puzzles toy with results and ideas from classic
number theory and geometry, game theory, and even popular
TV culture (one problem is about a variation of the game Survi-
vor)! I hope you enjoy thinking about them as much as I did.

1. A Weighty Problem

A woman possesses five stones, cach weighing an integral num-
ber of kilograms. She claims, with the use of a simple see-saw
balance, she can match the weight of any stone you give her
and thereby determine its weight. She makes this claim under
the proviso that your stone is of integral weight and weighs no
more than 31 kilograms.

What are the weights of her five stones?

2. Multiplication without Multiplying

Here’s an alternative method to long multiplication: Head two
columns with the numbers you wish to multiply. Progressively
halve the figures in the left-hand column (ignoring remainders)
while doubling the numbers on the right. Continue this opera-
tion until the left-hand column is reduced to 1. Delete all rows
with an even number in the left-hand column and add all the
surviving numbers from the right-hand column. This sum is the
desired product.

Does any power of two begin with a seven?

If so, does any power of two begin with 77?

Questions
Powers of

1 1472
1679

73 X 23=1679.
Why does this work?

3. Truncated Triangular Numbers

The numbers 5, 12, and 51, for example, can be written as a sum
of two or more consecutive positive integers:

5=2+3
12=3+4+5
51=6+7+8+9+10+11.

Which numbers cannof be written as a sum of at [east two con-
secutive positive integers?

4, Survivor

N people, numbered from 1 to N, are stranded on an island. They
play the following variation of the TV game Survivor:

Members of the group vote whether person number N should
survive or be escorted off the island. If 50% or more of the
people agree to this person’s survival then the game ends here
and the N people all take an equal share of a $1,000,000 cash
prize. If, on the other hand, the Nth person is voted off the island,
the remaining (N — 1) people will take a second vote to determine
the survival of the (N — 1)th player (again with a quota of 50%).
They do this down the line until a vote eventually passes and a
person survives. The cash prize is then shared equally among
all the folks remaining after this successful vote.
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Assume that all players are greedy, but rational, thinkers; that
they will always vote for their own survival, for example, and will
vote for the demise of another player provided it does not lead to
their own demise as a consequence.

The question here is simple: who survives?

5. Pascal Curiosity

Prove that all entries in the 2"th row (n € N) of Pascal’s triangle
are odd.

6. Checkers in a Circle

Betty places a number of black and white checkers in arbitrary
order on the circumference of a circle. (Say Betty lays down N
checkers.) Charlie now places new checkers between the pairs
of adjacent checkers in Betty’s ring: he places a white checker
between every two that are the same color, a black checker be-
tween every pair of opposite color. He then removes Betty’s
original checkers to leave a new ring of N checkers in a circle.

Betty then performs the same operation on Charlie’s ring of
checkers, following the same rules. The two players alternate
performing this maneuver over and over again on the circle of
checkers before them. Show that if NV is a power of two, all the
checkers will eventually be white, no matter the arrangement of
colors Betty initially puts down.

7. Classic Number Theory
Is 2°' — 1 prime? What about 2°' + 1?

8. De Polignac's Remarkable Conjecture

In the mid-nineteenth century, the French mathematician A. de
Polignac made a remarkable observation: It seems that every
odd number larger than one can be written as a sum of a power
of two and a prime.

3=2042
5=2'43
7=2"43
53=2%+37
241=27+113

999999 = 2'® + 944463

He claimed to have checked this for all odd numbers up to three
million! Can you prove de Polignac’s conjecture?

9. Stacking Dilemma

Two line segments can sit in one-dimensional space touching in
a zero-dimensional subspace, namely, a point:
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It is possible to arrange four triangles in a plane so that each
triangle intersects each other triangle along a one-dimensional
line segment of positive length:

Is it possible to arrange eight tetrahedra in three-space so that
each tetrahedron meets every other tetrahedron along a portion
of surface of positive area?

10. The Game of 5-7-9

Here’s a classic game for two players. It is played with three
piles of coins, one with five coins, the second with seven and
the third with nine coins. At each turn a player picks up as many
or as few coins as she chooses from a single pile. The player
who picks up the last coin wins.
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What strategy could the first player employ to guarantee a win?

11. Folding Fractions

Itis possible to place a crease mark exactly halfway along a strip
of paper simply by folding the paper in half. Then, using this
mark as a guide and folding the left and right portions of the
paper, we can accurately place creases at positions 4 and ¥4
respectively.

Is it possible to accurately place a crease mark at position ¥
on the paper?
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12. Where are the 7's?

Does any power of two begin with a seven? If so, does any
power of two begin with 777

Comments, Answers and Further Questions

1. Her stones weigh 1,2, 4, 8 and 16 kilograms respectively. As
every positive integer can be written uniquely as a sum of dis-
tinct powers of two, she can match any weightupto 1 +2+4 +
8 + 16 =31 kilograms with these stones.

Taking It Further. Using a see-saw balance and a different
set of five stones the woman can actually accomplish a much
more impressive feat: she can determine the integral weight of
any rock you give her weighing up to 243 kilograms! What are
the weights of these five different stones?

Hint: The woman no longer claims she can match the weight of
your stone, only that she can determine its integral value.

2. Removing the last digit of a number written in base two either
divides the number in half or subtracts 1 and then divides by
two, depending on whether the number is even or odd. (For
example, the binary code for the number 13 is 1101. Deleting the
last digit gives 110 which represents 6.) Thus one can determine
the binary code for a number simply by repeatediy dividing by 2
(ignoring remainders), and keeping track of whether or not the
result is even or odd along the way. We can thus read off the
binary code of 73 from the left column of the table as 1001001.
This means 73 =1+ 23+ 2%, and so

73 X 23 =(1+23+26) x 23.
Expanding the brackets yields:

73X 23= 1 x23

+ 26x23.

The desired product is precisely the sum of terms (resulting from
doubling the number 23 multiple times) that correspond to the
placement of ones in the binary code of the number 73, namely,
the placement of odd terms in the left column. This method
works for any pair of natural numbers you wish to multiply.

Comment. Computers perform multiplication in this way. The
halving and doubling operations are trivial when all numbers are
expressed in base 2.

3. All numbers except the powers of two can be written as a sum
of at least two consecutive integers. If N is a number of the form

N=(n+D+n+2)+.. . +(n+k)
forn, k € N with k = 2, then

: 1
N =kn+ /‘(k; ) =

1
~2~-k(2}z+k+1).
Ifkis odd, then (2n+k+ 1) is even and it follows that k is an odd
factor of N. If, on the other hand, & is even, then (2n+k+1) is an
odd factor of N. Either way, N possesses an odd factor and so
cannot be a power of two.

Conversely, all numbers possessing an odd proper factor,
can be written as a sum of two or more consecutive numbers.
Suppose N=ab witha, b € N, b = 1, a = 3, and a odd. Then

N=b+b+th+tb+---+b atimes
=(b—(a=1)/2)+ +(b-1)
+h+(b+1)+ -+ (b+(a—1)2).

1fb—(a—1)/2> 0 we arc done. If not, the first few terms of this
sum are negative and will cancel the first few positive terms in
the latter part of this sum. We need to show that, after cancella-
tion, at least two positive terms survive. Simple algebra verifies
that indeed ~(h—(a—1)/2) = b+ (a—1)/2-2.

Taking it Further. Classify those natural numbers that can
be expressed as a sum of at least three consecutive positive
integers.

4. One person on the island (V= 1) will certainly vote for himself
and so survive. With two people on the island (N = 2 case),
player 1 will not vote for player 2’s survival (he’ll survive with-
out her) but player 2 will. Thus player 2 survives and both folks
share the prize. With three players (V =3 case), players | and 2
will vote for player 3’s demise (they’re fine without her) and
even voting for herself, player 3 will not garner enough votes to
survive. Players 1 and 2 will again share the prize.

Consider the game with four people on the island. Player 4
will certainly vote for his survival. So too will player 3, for with-
out player 4, the previous analysis shows player 3 will not sur-
vive. Even though players | and 2 will vote against player 4,
player 4 has enough votes to survive, and thus all four players
stay on the island and share the prize.

For a game with N < § players, players | through 4 have no
need to vote for the survival of higher numbered players. Play-
ers 5, 6, and 7 are therefore doomed to leave the island. We need
the addition of an eighth player in the game to ensure their (and
this eighth player’s) survival.

In this way we see that the number of people who survive our
game Survivor is the largest power of two less than or equal to
the number of people initially on the island.

Taking it Further. How do the results of the game change if
players must attain strictly more than 50% of the votes in order
to survive?
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5. We are asked to show that each entry of the 2°th row of
Pascal’s triangle is congruent to 1 (mod 2). Regard the top row of
Pascal’s triangle as an infinite string of zeros except for a single “1”
in the ‘center.” Then every entry in the remaining rows of the
triangle is the sum of the two nearest terms in the row above it.
Working modulo 2, the first five rows of Pascal’s triangle are thus:

.0 0 0 1 0 0 0 ..

.0 1 0 0 0 1 0 ..

Certainly all the terms of'the first, second, and fourth rows of the
triangle are 1 (mod 2). Also, the two 1’s on the fifth row are
sufficiently spaced apart to generate their own copies of the
first four rows of the triangle. We thus obtain a row of eight 1’s
in the eighth row of Pascal’s triangle. The ninth row then con-
sists of two single I’s which are sufficiently far apart to generate
their own copies of the first eight rows of Pascal’s triangle, end-
ing with a sixteenth row which is nothing but 1’s; and so on. An
induction argument shows that all 2” entries of the 2"th row of
Pascal’s triangle are indeed congruent to 1 (mod 2).

Taking it Further. Prove that (2 j is even for n, k € N with
2
1 <k<2"Is [ !

n

] ever odd forn = 17

6. Break the circle and line the checkers in a row, noting that the
first and last checkers are ‘adjacent.” Represent this row of check-
ersasastring of 0’s and 1’s, where ‘0’ represents a white checker,
and ‘1’ a black checker. The transformation described in the
checker game creates a new string of 0’s and 1’s where each
entry in the second row is the sum of the two nearest entries
from the top row (with the appropriate interpretation for the end
digits given the ‘wrap around’ effect for the string).

Suppose N is a power of 2. Consider a game starting with a
single black checker. Due to the cyclic symmetry of the game, we
may as well assume the black checker is placed at the beginning
of the string, and thus the game can be represented by a string
of'the form:

1000...0.

Note that N — 1 applications of the transformation generate the
first N rows of Pascal’s triangle modulo 2 (the ‘wrap around’
effect does not affect the formation of this initial portion of the
triangle). By question 6, all entries of the final row are 1. Thus
after N — 1 steps, all checkers in the checker game will be black.
One more application of the transformation yields nothing but
white checkers.

An arbitrary game can be thought of as a superposition of
individual games involving single black checkers. For example,
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the game represented by 0110 is a superposition, in some sense,
of the games 0100 and 0010. The checker game transformation
commutes with ‘exclusive or’ binary addition (that is, binary
addition without carrying 1°s). As 0100 and 0010 both converge
to 0000, it follows that 0110 converges to 0000+0000=0000. This
argument shows that all checker games, involving a power of
two number of checkers, yield nothing but white checkers in at
most that many steps.

Taking It Further. Can anything be said for games with ¥
checkers where N is not a power of two?

7. First note that 2°! = (27)!. The identities
B—1=( - D +xt 4+ x4 1)
and
PHI=+ D -att+ o —x+ 1)

show that27— 1 =127 and 27 + 1 =129 are factors of 2°' — I and 2°!
+ 1 respectively. (So too are 8191 and 8193.) Thus neither num-
ber is prime.

Comment. Numbers of the form 27— 1 are called Mersenne Num-
bers. If n is composite, the above argument generalizes to show
that 27 — 1 too must be composite. If # is prime, however, the
situation is less clear. For example, 2" — 1 is prime forn=2,3, 5,
7, 13, 17 and 19, but not for n = 11. Nonetheless, Mersenne
numbers have proven to be a rich source of large prime num-
bers, the largest known today being 2697233 _ 1.

Taking It Further. Is 2°' - 3 prime? What about 2°! — 5 and
29077

8. Don’t bother! It isn’t true. De Polignac missed the number
127 which cannot be written as a sum of a power of two and a
prime. (One only need check this for the powers 2" with n=
0,...,6.) If only de Polignac noticed this slip, he could have
saved himself literally months of very hard work!

9. To arrange eight tetrahedra in three-space in the appropriate
way, use the following diagram of eight triangles in a plane.
Connect the four shaded triangles to a point hovering below the
plane of the drawing, and the four unshaded triangles to a point
hovering above the plane of the drawing. This yields eight suit-
ably touching tetrahedra.
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Taking It Further. Prove it is impossible to arrange five tri-
angles in a plane that meet pairwise in a line segment of positive
length. Is it possible to arrange nine tetrahedra in three-space in
the appropriate way?

10. Express the numbers of coins in each pile in binary notation
and write these numbers as rows of a table:

5 = 1 01
7= 111
9=1001

Notice there are an odd number of 1’s appearing in the ones,
twos and eights columns of the table. To guarantee a win, the
first player should always move so as to produce an even num-
ber of 1’s in each column. Her first turn is thus to convert the
number 1001 into 0010, that is, to reduce the pile of nine coins to
two coins. Her opponent will then be forced to create a table
with an odd number of 1°s in at least one column, and therefore
a game with at least one remaining coin. Player | always operat-
ing this way thus offers her opponent no hope of ever winning.

Taking It Further. Reverse 5-7-9 is played the same way except
this time the person who picks up the last coin loses. Does
either player have a best strategy in this variation of the game?

11. Placing a crease mark halfway between two previously con-
structed crease marks can only ever produce fractions of the
form 9y, where N is a power of two. And conversely, every
fraction of this form can be created via a finite sequence of such
folding operations (see below). Thus there is no (finite) proce-
dure for constructing the fraction 4. However, as every number

can be approximated arbitrarily closely by a fraction of the form
indicated (just truncate its binary decimal expansion for example),
it is possible to place a crease at any position we choose with
any desired degree of precision.

Alternatively, one can use the following procedure for plac-
ing a crease arbitrarily close to the position ¥7. Begin by making
a guess as to where this fraction lies along the strip and place a
crease at this location. Now fold the right portion of the strip in
half to place a crease halfway between the guess and the right
end of the paper. This produces a crease mark at position %
with the error reduced in half. Now fold from the left to produce
a crease at position ¥ with error reduced in half yet again, and
then, finally, fold from the right to produce a crease mark at
position ¥ with one eighth the original error. Repeating the
“RLR” sequence of folds multiple times yields a sequence of
crease marks that rapidly converge to the true %7 position.

Taking it Further 1. It is no coincidence that the sequence
of folds “RLR” mimics the binary representation 101 of the num-
ber five. Show that if N is one less than a power of two, then the
sequence of left and right folds that hones in on the fraction ¢
is precisely the binary expansion of a read backwards with ‘1’
representing ‘right” and ‘0’ representing ‘left.’

Taking it Further 2. Consider a fraction of the form 4.
Write g as an n-digit binary number (you may need to place
zeros at the beginning), and read this binary expansion back-
wards as a sequence of instructions with ‘1’ and ‘0’ represent-
ing ‘right’ and ‘left’ again. Show that if you follow these instruc-
tions through just once the final crease mark formed lies pre-
cisely at position 95",
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Taking it Further 3. Let ¢ be any fraction in the interval
[0, 1]. Show that, with a square sheet of paper, it is possible to
produce, in a finite number of folds, a creased line segment
precisely ¢ units long.

12. We seek integers 7 and k such that

7 X 10F < 2"<8 X 10,
that is,
log,, 7+ k < nlog,,2 <log,, 8 + k.

If {x} denotes the fractional part of the number x, we thus are
being asked to find a value » for which

log,o 7 < {nlog,s 2} <log,, 8.

Working on the interval [0, 1) with ‘wrap around’ effect (that
is, working modulo 1), we hope to find a multiple of log,, 2 that
falls within the segment [log,, 7, log,, 8), which is about 0.058
units long. It is easy to show that log,, 2 is an irrational number
(an equation of the form 2%= 107 can only hold if both exponents
are zero) and consequently no two distinct multiples of log,, 2
have the same fractional part. Thus, of the first 21 multiples of
log ;o 2, at least two if them must lie within a distance of Y49 =
0.05 from each other (considering the wrap around effect). Call
these multiples mlog,,2 and (m + g)log,, 2. It then follows that
the multiples (m + g)log,, 2 and (m + 2g)log,, 2 are also
within this distance of each other, as too are (m + 2q)log,,2
and (m+3g)log,, 2, and so on. Creeping along this way, we
must eventually hit upon a multiple of log,, 2 that lies in the
interval [log,, 7, log;, 8). This shows that powers of two begin-
ning with a seven do exist. (The diligent reader may have dis-
covered that 24¢ is the first power of two which begins with a 7.)

We can say more: The above argument shows that the mul-
tiples of log;, 2 form a dense set in the interval [0, 1) and so there
are infinitely many multiples that lie in any given segment. Thus
there are infinitely many powers of two that begin with seven
and, in some sense, we can say that 7 occurs as a first digit 5.8%
of the time! Similarly, log,,78 —log,,77 = 0.56% of the powers
of two begin with ‘77’ and there are infinitely many powers of
two that begin with any prescribed (finite) set of digits! (For
example, there are infinitely many powers of two that begin with
the first billion digits of pi!)

Acknowledgments and Further Reading

Several of these puzzles explore classic ideas from number theo-
ry. The interested reader can look at Jay R. Goldman’s beautiful
text The Queen of Mathematics, A Historically Motivated Guide
to Number Theory (A. K. Peters, Ltd., 1998), for example, to learn
more about this fascinating and challenging subject. I first learned
of the classification of truncated triangular numbers as a result
discovered by eight year old Mit’ka Vaintrob of New Mexico. He
followed a geometric approach, literally truncating triangular
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arrays of coins or buttons to create trapezoids with at least two
rows. His analysis of those numbers which can be expressed as
a sum of three consecutive integers is a remarkable achieve-
ment. Gengzhe Chang and Thomas Sederberg give a complete
analysis of the circular checkers game in their wonderful book
Over and Over Again (Mathematical Association of America,
1997).

Question 9, with its obvious extensions, is a very old and
extremely hard question. It is known that it is always possible to
arrange 2” high-dimensional “simplices” in n-space that meet,
pairwise, in regions of (n— 1)-space of positive volume, but it is
not at all clear whether one can do more. It has long been known
that is impossible to arrange five triangles in a plane in this way,
but it wasn’t until 1991 that J. Zaks was able to prove the impos-
sibility of arranging nine tetrahedra in three-space. Analysis of
higher-dimensional spaces is still an area of open research. See
Martin Aigner and Giinter M. Ziegler’s Proofs from the Book
(Springer-Verlag, 1999), Chapter 13, for a discussion on this fas-
cinating topic.

The 5-7-9 game, of course, is a specific instance of the fa-
mous game Nim. One can explore the subject of nimbers in John
H. Conway and Richard K. Guy’s The Book of Numbers
(Copernicus, 1996). Changing the value of the quota in the game
Survivor leads to some very interesting mathematics; my col-
league Charles Adler and I are currently writing about some
curious results from this game. [l

The Bridges of Konigsberg/Kaliningrad: A Tale of One City in
the April, 2001 Math Horizons contained some errors. The
following replaces paragraphs three and four.

Euler converted the puzzle to a combinatorial question which
he then solved. Thus he became the first mathematician ever
to publish a paper on graph theory! He created a mathemati-
cal model of the puzzle by replacing each of the four land
areas by a vertex and each bridge by an edge joining two
vertices, as shown in Figure 2. Then the problem became to
begin at any one vertex, v, traverse consecutive edges just
once each until every edge has been used, and end at v.

Now we say that a graph or multigraph G is eulerian and
has an eulerian trail if this puzzle can be solved for G. Euler
answered this question by proving that a graph is eulerian if
and only if it is connected and every vertex has even degree (is
incident with an even number of edges).

The author credit should read: Frank Harary is Professor Emeritus
of Mathematics at the University of Michigan and of Com-
puter Science at New Mexico State University.




