
Two Classical Surprises Concerning the 
Axiom of Choice and the 
Continuum Hypothesis 

Leonard Gillman 

1. INTRODUCTION. In this paper we introduce the reader to two remarkable re- 
sults in the theory of sets. Both are more than fifty years old, but neither one appears 
to be well known among nonspecialists. Each one states that a certain proposition im- 
plies the Axiom of Choice. First we describe the results, then review definitions, then, 
finally, present the proofs, most of which are straightforward. 

Our first surprise concerns Trichotomy, which states that any two (infinite) cardinals 
a and b are comparable-i.e., either a < b or a = b or a > b. In the absence of spe- 
cial assumptions, Trichotomy may not be taken for granted. In fact, Friedrich Hartogs 
proved in 1915 that Trichotomy implies the Axiom of Choice. (This is the surprise.) It 
is an astounding result, as Trichotomy appears to be an isolated proposition. In addi- 
tion, the same paper of Hartogs makes a crucial contribution to the "continuum prob- 
lem," which is to decide where c, the cardinal of the continuum (i.e., the cardinal of the 
set R of real numbers), lies in the hierarchy of the "alephs": tl, 2, ...,. (I ex- 
clude t% from the list, as it had been ruled out by Cantor twenty-five years earlier [2].) 
The problem was unyielding, causing some mathematicians to wonder in desperation 
whether c might actually be greater than all the alephs. But Hartogs showed that no 
cardinal can have this property. Remarkably, Hartogs's reputation is primarily as the 
best known among the early pioneers in the field of several complex variables. 

Georg Cantor was the creator of the theory of sets. His most famous theorem states 
that every cardinal m satisfies m < 2' [2]. The Continuum Hypothesis asserts that 
2`O = ti, the latter being an immediate successor to t%-conceivably, there are more 
than one-and hence implies that there is no cardinal lying strictly between to and 2'0. 
The General (or Generalized) Continuum Hypothesis states that, for every cardinal m, 
no cardinal lies strictly between m and 2m. 

The second surprise, published by Waclaw Sierpin'ski in 1947, is that the General 
Continuum Hypothesis implies the Axiom of Choice, whereas the two seem to have 
nothing to do with one another. As a bonus, the proof makes use of Sierpin'ski's sharp- 
ened version of Hartogs's theorem. 

Kurt Godel proved in 1938 that the General Continuum Hypothesis and the Axiom 
of Choice are consistent with the usual (Zermelo-Fraenkel) axioms of set theory [4]. 
Twenty-five years later, Paul Cohen established that the negations of the Continuum 
Hypothesis and the Axiom of Choice are also consistent with these axioms [3]. Taken 
together, these results tell us that the Continuum Hypothesis and the Axiom of Choice 
are independent of the Zermelo-Fraenkel axioms. 

We shall work within the framework of classical "naive" set theory rather than mod- 
ern axiomatic set theory. We assume that the reader is familiar with the elementary 
notions of set, element, membership, subset, inclusion, union and intersection, and the 
empty set. This last is denoted by the Norwegian and Danish letter 0, sounded much 
like the "u" in "put" or the German "6". 

A (total or linear) order on a set S is a relation '<' that satisfies the following three 
conditions for all x, y, and z in S: 
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(i) eitherx = yorx < yory < x; 
(ii) x g x; 

(iii) if x < yandy < z,thenx < z. 

The set S, equipped with the order relation <, is called a (totally or linearly) ordered 
set. The set R of real numbers, with its natural ordering, is a familiar example of an 
ordered set, as are all its subsets (understood: in the order inherited from R). 

Two ordered sets are said to be similar (or order-isomorphic) if there is an order- 
preserving, one-to-one correspondence between them. Similar sets are said to have 
the same order type (and dissimilar sets to have different order types). It is clear that 
similarity is an equivalence relation. A finite set of n elements can be ordered in n! 
ways, but all the ordered sets thus obtained are similar: each has a first element, a 
second, . . ., and, finally, an nth. The order type in this instance is (happily) symbolized 
by n. 

Conditions (ii) and (iii) by themselves define < as a partial order (and the set with 
this ordering as a partially ordered set). The standard example of a partially ordered 
set that is not totally ordered is the set of all subsets of a given set (of more than one 
element) ordered by inclusion. An example for the nonmathematician is a couple with 
two children, with x < y meaning that person x is a direct ancestor of person y. 

2. CARDINAL NUMBERS. The "cardinal (number)" of a set is a generalization to 
all sets, nonfinite as well as finite, of the concept of "number of elements." The cardinal 
of a finite set of n elements is denoted by n (the same symbol used for its order type). 
In particular, the cardinal of the empty set is 0. The terms finite set (or cardinal) and 
infinite set (or cardinal) should be obvious. (But see the "crucial distinction" a few 
paragraphs hence.) Fundamental in this discussion is the relation of 'equipotency': two 
sets are said to be equipotent provided a one-to-one correspondence exists between 
them. It is clear that equipotency is an equivalence relation on the class of all sets. 
[Technical note: One does not speak of "the set of all sets," as this concept leads to 
serious logical difficulties.] 

In the absence of the Axiom of Choice, the definition of cardinal number is compli- 
cated. In our informal setting, we shall accept the principle that with every set there is 
associated an object called its cardinal number (or cardinal or cardinality or power) 
in such a way that two sets are associated with (or "have") the same cardinal if and 
only if they are equipotent. We do not go into how this association is achieved, but just 
assume that somehow or other it is. This is probably the attitude of many if not most 
mathematicians, who are likely to be more interested in their own fields than in learn- 
ing about axioms in someone else's. We will often refer to a set as a representative of 
its cardinal. The cardinal of a set S is denoted by ISI. 

The number It. The character t is "aleph," the first letter of the Hebrew alphabet. 
The symbol No denotes the cardinal of the set N of natural numbers 0, 1, ..., n, .... 
i.e., INI = No. A set that is either finite or of cardinal No is said to be countable. (A set 
of cardinal No itself is conveniently referred to as countably infinite.) One of Cantor's 
earliest triumphs was to prove that Q, the set of rational numbers, is countable (and 
hence countably infinite) [1]. 

Comparability of cardinals. Let a and b be cardinals, with representative sets A 
and B, respectively. We define a < b (or, equivalently, b > a) to mean that A is equipo- 
tent with some subset of B, but B is not equipotent with any subset of A. (As usual, A 
and B may be replaced by any other representative sets.) The relation < just defined 
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is irreflexive and transitive; it therefore defines a partial ordering relation on the class 
of all cardinals. The notation a < b (b > a) signifies that A is equipotent with some 
subset of B. [A crucial distinction: In the absence of the Axiom of Choice (in fact, 
in the absence of the weaker axiom of "countable choice"), we do not know that an 
arbitrary infinite set necessarily has a countably infinite subset-in other words, we do 
not know that an arbitrary infinite cardinal is greater than or equal to 0o.] 

Of major importance in connection with the comparability of cardinals is: 

Bernstein's Equivalence Theorem. Two sets each equipotent with a subset of the 
other are equipotent. 

This result justifies the notation '<', as it can be paraphrased as: 

If a < b and a > b, then a= b. 

The theorem was conjectured by Cantor, who assigned it to his doctoral student Fe- 
lix Bernstein, who eventually proved it. The names "Cantor" or "Schr6der" are often 
included along with Bernstein's in the title of the theorem, Schr6der having been the 
first person to give a proof. Proofs were subsequently given by several others, notably 
Peano [7] and Zermelo [11], whose proofs are essentially identical. Their argument is 
sufficiently elegant that I cannot resist the temptation to repeat it here. 

Let A and B be the two sets under consideration in Bernstein's theorem. We are 
given that there exist a one-to-one mapping of A onto a subset B' of B and a one-to- 
one mapping of B onto a subset A' of A. The latter takes B' onto a subset A" of A', so 
A D A' D A". Decompose A into the disjoint sets 

P = A", Q = A'\ A", R= A\ A', 

and note that P U Q = A'. We have P U Q U R = A A" = P ('_' denoting equipo- 
tency). Because B _ A', it will suffice to show that P U Q P. (All this is in Bern- 
stein's proof.) 

Now let f denote the composite one-to-one mapping A - B' -+ A", and for each 
subset X of A define X* = f (X) U Q. Let us say that a subset X of A is "normal" if 
X D X*. (For example, A is normal.) It is readily seen that all sets X* are normal and 
that arbitrary intersections of normal subsets are normal. In particular, the set N that 
is the intersection of all normal subsets is normal. Obviously, N is the smallest of all 
the normal subsets. Since N D N* and N* is normal, we must have N = N*. Thus, 
N = f (N) U Q. Noting that the sets f (X) are subsets of P, we may introduce a set Y, 
the complement of f (N) in P. Then P = Y U f (N) and we have 

P U Q = Y U f (N) U Q = Y U N_ Y U f (N) = P, 

which completes the proof. 

Suppose that for every pair of cardinals a and b either a < b or a > b-that is to 
say, either a < b or a = b or a > b. Then Trichotomy holds and the partial ordering 
relation on the class of all cardinals is a total ordering. On the other hand, as was 
pointed out earlier, we may not assume without further evidence that this is the case: 
conceivably for some pair of cardinals a and b the relations a < b and a > b both fail. 

3. THE ARITHMETIC OF CARDINALS. In the definitions that follow, a and b 
will denote arbitrary cardinals, and A and B will be corresponding representative sets. 
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It will be true in each case that the defining equation is independent of the choice of 
representatives. Note that from arbitrary representatives A and B of a and b we can 
always create disjoint representatives-for example, the set of all pairs (a, 0) for a 
in A and the set of all pairs (b, 1) for b in B. 

Addition. 

Definition: a + b = IA U B I, 

where in this one case we require A and B to be disjoint. Addition, thus defined, is 
associative and commutative, and a + 0 = a. (Infinite sums are also defined, typically 
with the help of the Axiom of Choice.) It is easy to show that 

1 + to =to, 

and in fact that 

o +? to = to. 

For important use later, we establish the following fact: 

If m> o, then?+m=m. (1) 

The hypothesis implies that a representative set M of power m has a subset N of power 
to. Define a = IM \ NI. Since M is the union of the disjoint sets N and M \ N, we 
have 

m = to + a = 1 + t% + a = 1 + m. 

Multiplication. 

Definition: ab = IA x BI, 

where A x B = {(a, b) : a E A, b E B}, the usual Cartesian product of A and B. 
Multiplication, defined in this way, is associative and commutative, is distributive over 
addition, and satisfies a x 1 = a and a x 0 = 0. Cantor's "First Diagonal Process" 
shows that t% x to = to. Multiplication is also representable as repeated addition 
(usually requiring the Axiom of Choice when infinite sums are involved). 

Exponentiation. 

Definition: ab = IABI, 

where AB denotes the set of all mappings from B into A. The familiar laws of expo- 
nents hold, plus the equation 00 = 1. (Don't let your calculus students see this one!) 
Exponentiation is also representable as repeated multiplication (infinite products typi- 
cally requiring the Axiom of Choice). 

The most important exponentials are those with base 2, where 2 represents the 
set {0, 1}. (For clarification of this usage of the numeral 2, see the material on ordinal 
numbers in Section 5.) Observe that we may regard {0, I }' as the set of all subsets of S: 
to do this we merely identify each subset T of S with its "characteristic function" XT, 
defined on S by 

XT (S) 
I if s T. XT(Juy202)j0 if s T. 



The most famous example is 2'0, which we are free to interpret as either the set of 
all subsets of N or the set of all mappings of N into {o, 11, i.e., the set of all se- 
quences of Os and Is. Its cardinal is of course 2'0 (where now 2 is the cardinal of the 
set 10, 1}). This set of sequences represents the binary expansions of all real numbers 
in the interval [0, 1]-with the help of some tweaking to avert duplications of the sort 
.0111 ... = .1000 ... that arise from the dyadic rationals. The interval [0, 1], like all 
other intervals of R, is equipotent with R itself. Therefore c = 280O 

If a < a' and b < b', then assuredly ab < ad'. On the other hand, one should be 
wary of concluding the strict inequality, even when both the given inequalities are 
strict: Tarski long ago cooked up a counterexample [10, p. 10]. 

4. THE AXIOM OF CHOICE. This is the assertion that for any collection of 
nonempty sets there exists a set containing an element from each set of the collection. 
Despite its innocuous sound, this principle has been a source of wide controversy 
among mathematicians and logicians, with many insisting that they don't know what 
its statement means: in the absence of a rule specifying which elements are to be 
chosen, what does it mean to say that the set in question exists? Others are content 
to interpret the axiom as simply postulating a set without identifying the elements it 
comprises. It is a safe bet that most mathematicians who make use of the axiom in their 
work as a matter of course are not always aware that that is what they are doing-for 
example, when arguing that if a point in a Euclidean space is a point of accumulation 
of a set, then there is a sequence of points of the set converging to the point. 

5. WELL ORDERING. An ordered set is said to be well ordered if every nonempty 
subset has a least (= first) element. Trivially, every ordering of a finite set is a well 
ordering. More significantly, the set N of natural numbers is well ordered (in its usual 
order), a fact well known to be equivalent to the principle of mathematical induction. 

The Well-Ordering Theorem asserts that every (infinite) set can be well ordered. It is 
due to Ernst Zermelo [12]. It is arguably the most important application of the Axiom 
of Choice. Conversely, the Axiom of Choice is an easy consequence of the theorem. 

Ordinal numbers (or ordinals). Whereas the cardinal of a set measures its quan- 
tity, the ordinal of a (well-ordered) set measures its "length." The formal definition of 
ordinal is recursive, each new one being defined as the set of all preceding ordinals: 

0=0, 1={0}, 2={0,1},..., n?+={0,1,...,n},... 

w) = {0,1, ...,n, ...}, +1 = {0,1, ...,n, ...co}. 

It may seem at first glance that the "transfinite" sequence generated by this process 
must be countable, but the fact is that it reaches and surpasses cardinalities of almost 
unimaginable size. 

Recall that the "second principle" of induction for N proceeds by passing from all 
predecessors of n to n. In the realm of arbitrary infinite sets, this principle is known as 
transfinite induction. It is viable on a set if and only if the set is well ordered. 

Ordinals are well-ordered sets-indeed, they are the models for well-ordered sets. 
The class of all ordinals is well ordered by inclusion, a c /3 implying a < P. Every 
well-ordered set is similar to a unique ordinal, which represents its order type. As sug- 
gested by the foregoing display, the ordinal of N is w. The subset No of even numbers 
and the subset N1 of odd numbers are also of type co. Ordinals beyond to + 1 are not 
commonly encountered in everyday life. Here's one: the ordered set that lists No in 
its natural order followed by N1 in its natural order. That it is well ordered is easy to 
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verify. Because it consists of a set of type co followed by a set of type co, its ordinal is 
designated as co + co. Evidently, none of the familiar sets R, Q, or Z (the integers) is 
well ordered. 

Segments. For each element w of a well-ordered set W, the set 

{x E W:x < w} 

(in which it is understood that '<' denotes the ordering relation on W) is known as 
a segment of W, specifically, the segment determined by w. The following theorems 
about well-ordered sets and their segments are fundamental: 

a. Every subset of a well-ordered set is well ordered. 

b. Every well-ordered set W is similar to a unique ordinal, which is greater than 
the ordinal of any of the segments of W. In particular, a well-ordered set is not 
similar to any of its segments. 

c. Distinct ordinals are dissimilar. 

d. Of two dissimilar well-ordered sets, one is similar to a segment of the other. In 
particular, of two different ordinals, one is a segment of the other. 

e. Every segment of an ordinal is an ordinal. 

f. The ordinal number of an ordinal a is a itself. 

g. Every well-ordered set is similar to its set of segments ordered by set inclusion 
under the mapping that takes each element to the segment it determines. 

6. THE ALEPHS. An aleph is the cardinal number of an infinite well-ordered set. 
Since subsets of well-ordered sets are well ordered, we can state: 

Any infinite cardinal less than an aleph is an aleph. 

In the presence of the Axiom of Choice, all sets are well orderable and all infinite 
cardinals are alephs. 

The alephs are indexed and their sizes well ordered by the ordinals; hence any 
two alephs are comparable, and every nonempty set of alephs has a least member. 
The smallest aleph is t%. One can show without much difficulty that the set Zo of all 
ordinals of cardinal to is uncountable; the number ti is defined to be the cardinal 
of Z0. Next, for each finite n, tn+l is by definition the cardinal of the set Zn of all 
ordinals of cardinal tn. The cardinal S, is then defined to be the sum of the tn over 
all finite n, i.e., the cardinal of the union of the Zn for all finite n. Likewise, for an 
arbitrary ordinal a, t+j is the cardinal of Za, the set of all ordinals of cardinal . 
Finally, for a limit ordinal X (an ordinal that, like co, has no immediate predecessor), 
t, is the sum of all alephs of smaller index. 

We state for later reference the following result: 

The Axiom of Choice and the Well-Ordering Theorem are each (2) 
equivalent to the proposition that every infinite cardinal is an aleph. 

Proof. We pointed out in Section 5 that the Axiom of Choice is equivalent to the Well- 
Ordering Theorem. In turn, simply comparing the definitions shows that the 
Well-Ordering Theorem is equivalent to the proposition that every infinite cardinal 
is an aleph. a 
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7. TRICHOTOMY AND THE AXIOM OF CHOICE. This section and the next 
derive the Axiom of Choice from certain propositions. Obviously, we do not assume 
this axiom in the discussion. The results needed along the way would be trivial in the 
presence of the axiom, but in its absence, some of the proofs will be a bit complicated. 
In particular, the proofs of Theorem 1 and Lemma 2 are a little tricky-while the ideas 
themselves are elementary, keeping track of the details can be a challenge. 

Theorem 1 (Hartogs-Sierpin'ski). To each infinite cardinal m is associated an aleph 
N(m) satisfying the relations 

tR(M) $ m (3) 

and 

t;(m) <2 (4) 

Hartogs's results were (3) and its corollary (stated following the proof of the theo- 
rem), together with Theorem 2. They were published in [5]. Our proof of Theorem 1 
is based on Sierpin'ski's account in [9, pp. 410-412, Theorem 1 and Corollary]. 

Proof of Theorem 1. Let m be an infinite cardinal, and let M be a set of cardinal m. 
Since 2M is the set of all subsets of M, a member of 2M is a subset of M and a subset 
N of 2M is a set of subsets of M. Now, it may happen that the members of N are well 
ordered by set inclusion. Let W denote the set of all subsets N of 2M whose members 
are well ordered by set inclusion (as subsets of M). Since W is a set of subsets of 2M, 
W c 22M 

Each member of W is a well-ordered collection of sets. We may therefore partition 
W into similarity classes. Let E denote the set of these classes. Now to each such class 
we can associate the ordinal common to all its members and interpret E as the set of 
these ordinals. Then E is well ordered in the natural way. 

We now show that IEt I IM . Suppose on the contrary that IEl < Ml. Then E is 
equipotent with some subset M1 of M. The one-to-one correspondence between E and 
M1 defines a well ordering of M1 similar to that of E. Let S denote the set of segments 
of M1. Then 

ord S = ord M1 = ord E, (5) 

"ord X" denoting the ordinal of X. Since S is a set of subsets of M well ordered 
by set inclusion, it belongs to W; hence S belongs to some similarity class K in the 
collection E. The segment of E determined by K is then similar to S. But then by (5) 
this segment of E is similar to E itself, which we know is not possible. Accordingly, 
we must have El MIM. 

Observe next that, since M is infinite, E must be infinite as well; otherwise we 
would have IEl < MI, which has just been ruled out. Thus E is an infinite well- 
ordered set, so IE is an aleph; we define N (m) to be this aleph. Recalling that 
MI = m, we see that N(m) $ m, which is (3). 

Finally, because E is a set of subsets of W, we have E C 2w. Recalling that 

W c 2i , it follows that E c 222. In terms of cardinals, N(m) <222 , which is (4). 

From (3), we quickly obtain the celebrated results of Hartogs announced in the 
introduction. The first of these is: 
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Corollary. No cardinal is greater than all the alephs. 

Indeed, by the theorem, for every infinite cardinal there is an aleph that it is not less 
than it. 

Hartogs's principal result is: 

Theorem 2. Trichotomy is equivalent to the Axiom of Choice and to the Well-Ordering 
Theorem. 

Proof. First we derive Trichotomy from the other two propositions. If either one 
(and hence both) hold, then by (2) every infinite cardinal is an aleph. Since any two 
alephs are comparable, we conclude that any two cardinals are comparable-which 
is Trichotomy. Conversely, assume Trichotomy, and consider any infinite cardinal m. 
(Now comes the coup de grace.) From Theorem 1, t (m) $ m. Hence by Trichotomy, 
t(m) > m. Thus m is less than some aleph and therefore is itself an aleph. Since m 
was arbitrary, all infinite cardinals are alephs. By (2), this implies the Axiom of Choice 
and the Well-Ordering Theorem. U 

8. THE GENERAL CONTINUUM HYPOTHESIS AND THE AXIOM OF 
CHOICE. Recall that the General Continuum Hypothesis asserts: for every infi- 
nite cardinal m, there is no cardinal n satisfying m < n < 2m. Sierpin'ski was the first 
to establish a connection between the General Continuum Hypothesis and the Axiom 
of Choice [8]. Many years earlier, in [6], Tarski had announced the same implication 
(Theorem 3 following) but without supplying even a hint of a proof. 

Theorem 3. The General Continuum Hypothesis implies the Axiom of Choice. 

Assuming the General Continuum Hypothesis, we will derive the Axiom of Choice 
in its equivalent version that every infinite cardinal is an aleph. First we establish three 
lemmas. 

Lemma 1. If p > to, then 2 + p =-2 22 = 2p. 

Proof. We know from (1) that 1 + p = p. Hence 

2P < 2P + p < 2 2P = 21+ =2P, 

and the result follows. U 

Lemma 2. If a and p are cardinals satisfying 2p = p and a + p = 2p, then a > 2p. 

Proof. Let P and P' be disjoint sets of power p, and let A be a set of power a disjoint 
from P. Then 

AU PI = a+p = 2 = 2p = 12pup 1. 

Here the first equality uses the fact that A n P = 0 and the last one that P n P/ = 0. 
Let f be a one-to-one mapping of A U P onto 2Pup'. For E a subset of P', let E* 
consist of the set E plus those elements x of P that do not belong to the set f (x). 
Then E* C P U P', and for all x in P, x E E* if and only if x V f (x)-in short, for 
all x in P, E* :A f(x). It follows that E* = f(y) for some y in A. Now E is any 
one of the 2P subsets of P', and the correspondence between E and E* is one-to-one. 
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Therefore there are 2P sets of the form E*, hence 2 corresponding elements y in A. 
Consequently, A has at least 2P elements. Thus a > 2p. U 

Now consider an arbitrary infinite cardinal n. We will establish that n is an aleph. 
To do this, we define 

m = 2-"n 

and produce an aleph that majorizes m. It then follows that both m and the smaller 
cardinal n are alephs. 

Introduce the abbreviations 

Po = m, Pi = 2P =2m P2 = 2P1 = 2 p3 = 2P2 = 2 (6) 

These p,, all satisfy P, > m > t% and thus by Lemma 1 satisfy 

2 2Pn = 2PI1. (7) 

The nub of the proof of Theorem 3 is our final lemma, in which we recall Hartogs's 
aleph t(m) in preparation for its central role. 

Lemnia 3. For n = 1, 2, or 3, if 

t(m) < Pn 8) 

then either m is an aleph or 

tR(M) -' Pn-l- (9) 

Proof. Using (8), (6), and (7), we have 

Pn-1 i (m)+ Pn-I -< Pn + Pn = Pn = 2P11-1 

briefly, 

Pn-I -< W(M) + Pn-1 < 2Pn-1. 

By the General Continuum Hypothesis, one of the two weak inequalities must be an 
equality. If 

t(m) + Pn-1 = 2P11-1, 

then Lemma 2 (with a = t(m), P = Pn-1) and (6) yield 

t(m) > 2Pn-1>M, 

whence m is an aleph. If, on the other hand, 

tR(m) + Pn -I = Pn -I 

then 

W(M) -< Pn-1, 

which is (9). U 
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Proof of Theorem 3. Theorem 1 tells us that t(m) < P3, i.e., (9) holds for n = 3. By 
Lemma 3, either m is an aleph or (9) holds for n = 2. Iterating, we conclude that either 
m is an aleph or (9) holds for n = 1. Reiterating, either m is an aleph or (9) holds for 
n = 0. But this last alternative is not possible, as it states that 

W(m) <Po= m, 

contradicting Hartogs's theorem (3). It follows that m is an aleph. 0 
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