THE FORMATION AND DECAY OF SHOCK WAVES
PETER D. LAX, Courant Institute, New York University

1. Introduction. The theory of propagation of shock waves is one of a small
class of mathematical topics whose basic problems are easy to explain but hard to
resolve. This article is a brief introduction to the subject: we shall describe the origin
of the governing equations, some of the striking phenomena, and a few of the ma-
thematical tools used to analyse them.

2. What is a conservation law? A conservation law asserts that the change in
the total amount of a physical entity contained in any region G of space is due to the
flux of that entity across the boundary of G. In particular, the rate of change is

2.1 4 udx = —f f+ndS,

dt Jg 26
where u measures the density of the physical entity under discussion, and the vector f
describes its flux; n is the outward normal to the boundary dG of G. If u and f are
differentiable functions, we can, on the left, perform the differentiation under the
integral sign and on the right apply the divergence theorem. We obtain

f {u, + divf} dx =0.
G

This relation is assumed to be valid for every domain G. Letting G shrink to a point
and dividing by the volume of G we get the differential form of the conservation law:

2.2) u, +divf=0.

To complete the theory we need some law relating f to u. E.g., Newton’s law of
cooling asserts that the flux of heat is proportional to the negative gradient of u, where
u is temperature; in this case f =, — h grad u, h positive, so (2.2) becomes

u, — hAu =0, A = div grad.

In this example f depends on the derivatives of u; in what follows we assume that f
depends on u alone. More precisely, we shall be looking at systems of conservation
laws

(2.3) uf+divfi=0, j=1,-n,
where each f7 is a function of all the #!,---,u", and a nonlinear function at that.
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Many equations of mathematical physics are of this form, in particular, those
governing the flow of a nonviscous, compressible fluid.

We shall concern ourselves with the initial value problem for systems of form
(2.3); that is, given the value of each u’ at ¢ =0 as function of x, determine u’ as
function of x and ¢ for all ¢ > 0.

3. The theory of a single nonlinear conservation law. In this section we shall
study conservation laws for a single quantity u dependent on only one space variable
x; in this case f has only one component:

(CRY) u +f=0,

where f is some nonlinear function of u. Denoting
df

(3.2) -‘Tu— = a(u)

we can write (3.1) in the form
(3.3) u, +a(wu,=0

which asserts that u is constant along trajectories x = x(¢) which propagate with
speed a:

dx
(3.4) =

For this reason a is called the signal speed; the trajectories, satisfying (3.4), are called
characteristics. Note that if f is a nonlinear function of u, both signal speed and
characteristics depend on the solution u.

The constancy of u along characteristics combined with (3.4) shows that the
characteristics propagate with constant speed; so they are straight lines. This leads
to the following geometric solution of the initial value problem

u(x,0) = ugy(x).

Draw straight lines issuing from points y of the x-axis, with slope 1/uy(y) (see
Fig. 1).
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As we shall show, if u, is a C* function, these lines simply cover a neighborhood
of the x-axis; since the value of u along the line issuing from the point y is uy(y),
u(x,t) is uniquely determined near the x-axis.

An analytical form of this construction goes like this (see Fig. 2)

(x,1)

7
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Let (x,£) be any point, y the intersection of the characteristic through x, t with the
x-axis. Then u = u(x,t) satisfies

(3.5) u=uy(y), y=x—ta(u).

Assume u, differentiable; then, according to the implicit function theorem, (3.5) can
be solved for u as a differentiable function of x and ¢ for ¢ small enough, and

uod ug

(3.6) “ETTE uga,t “ETF uga,t’

Substituting (3.6) into (3.3) we see immediately that u defined by (3.5) satisfies (3.3).
Let’s assume that equation (3.3) is genuinely nonlinear, i.e., that a, = 0 for all u,
say

(3.7) a,> 0.

Then if ug is = 0 for all x, u, and u, as given by formulas (3.6) remain bounded for
all ¢t > 0; on the other hand, if ug is < 0 at some point, both u, and u, tend to co as
1 + ug a,(uo)t approaches zero. Both these facts can be deduced from the geometric
form of the solution contained in Figure 1:

In the first case, when uy(x) is an increasing function of x, the characteristics
issuing from the x-axis diverge in the positive ¢ direction, so that the characteristics
simply cover the whole half-plane ¢ > 0. In the second case there are two points y,
and y, such that y, <y,, and u; =uy(yy) > ue(y,) = u,; then by (3.7) also
a, = a(u,) > a(u,) = a, so that the characteristics issuing from these points intersect
at time

Y2 — W1

t = ——.
a; — ay
At the point of intersection, u has to take on the value u; and u, both, an impos-
sibility (see Fig. 3).
Both the geometric and the analytic argument prove beyond the shadow of a
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doubt that if the initial value u, is not an increasing function of x then no continuous
function u(x,t) exists for all t > 0 with initial value u, which solves equation (3.3)
in the ordinary sense!

What happens after continuous solutions cease to exist? After all, the world
does not come to an end. For an answer, we turn to experiments with compressible
fluids: these clearly show the appearance of discontinuities in solutions. We begin
our study of discontinuous solutions with the simplest kind, those satisfying (3.1) in
the ordinary sense on each side of a smooth curve x = y(t) across which u is dis-
continuous. We shall denote by u; and u, the values of u on the left and right sides
respectively of x = y(#). Choose a and b so that the curve y intersects the interval
a < x = b at time ¢ (see Fig. 4).

Iy x = y()

S

o
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Denoting by I(t) the quantity I(f) = f Pu(x,t)dx = f Y+ 'J’,, we have

dI y b
(3.9) — =f udx + u;s +f udx — u,s,
dt a ’

where we have used the abbreviation

3.9 5= —fiTy
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for the speed with which the discontinuity propagates. Since on either side of the
discontinuity (3.1) is satisfied we may set u, = — f, in the integrals in (3.8); after
carrying out the integration we obtain dI /dt = f, — f, + w;s — f, + f, — u,s; here we
have used the handy abbreviations

Jw)=f.  fw)=/,
Jw@)=fo b)) =f,.

The conservation law asserts that dI /dt = f, — f,. Combining this with the above
relation we deduce the jump condition

(3.10) sfu] =[f1,

where [u] = u, — u; and [f] = f, — f, denote the jump in u and in f across y.
We show now in an example that previously unsolvable initial value problems
can be solved for all ¢+ with the aid of discontinuous solutions. Take

(3.11) f(u) =32,
1 for x <0
ug(x) = 1—-x for0=x=<1

0 for 1 < x.
AN
gre%
2rd

0 1 x
Fig. 5

The geometric solution is single valued for t < 1 but double valued thereafter (see

Fig. 5). Now we define for t = 1
1 for x<(1+1)/2
u(x,1t) = {
0 for (14+1)/2 <x.

The discontinuity starts at (1,1); it separates the state #, =1 on the left from the
state u, =0 on the right; the speed of propagation was chosen according to the
jump condition (3.10), with f(u) = 1u?:
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Introducing generalized solutions makes it possible to solve intial value problems
which could not be solved within the class of genuine solutions. At the same time
there is the danger that the enlarged class of solutions is so large that there are several
generalized solutions with the same initial data. The following example shows that
this anxiety is well founded:

0 for x <0

uop(x) = {

1 for 0 < x.

FiG. 6

The geometric solution

0

is single valued for ¢ > 0 (see Fig. 6) but does not determine the value of u in the
wedge 0 < x < t. We could fill this gap in the fashion of the previous example and set

0 for x <t/2

(.12) uen) = {1 for ¢/2 < x.

The speed of propagation was so chosen that the jump condition (3.10) is satisfied.
On the other hand the function

(3.12) u(x,t) =x/t, 0<x=<t

satisfies the differential equation (3.3) with a(u) =u, and joins continuously the
rest of the solution determined geometrically. Clearly only one of these solutions
can have physical meaning; the question is which?

We reject the discontinuous solution (3.12) for failure to satisfy the following
criterion:

The characteristics starting on either side of the discontinuity curve when
continued in the direction of positive t intersect the line of discontinuity. This will
be the case if

(3.13) a(uy) > s > a(u,).
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Under condition (3.7) for a this means that
(3.14) u; > u,.

Clearly this condition is violated in the solution given by (3.12).

The analysis at the beginning of this section shows that signals propagate along
characteristics. Condition (3.13) allows each point of the discontinuity to be reached
by characteristics on both sides, so that the shock is influenced by the initial data of
the solution; this constitutes one justification of Condition (3.13). Another justification
can be based on characterising the physically meaningful solutions as limits, when u
tends to zero, of the viscous equation

U+ f(U), = Py, 1>0.

Yet another justification can be based on the theory of entropy. We shall not go into
this interesting matter any deeper here, but merely record the gratifying fact that
when a(u) is a monotonic function of u, condition (3.13) is restrictive enough to
make the solution of the initial value problem unique, yet it is broad enough to
allow the construction of a solution for all time ¢ > 0, having as initial value any
integrable function u,. True, the concept of solution has to be generalized beyond
simple discontinuities: a bounded measurable function u(x, ) is said to satisfy the
conservation law (3.1) in the sense of distributions, if for all continuously differentiable
test functions ¢(x,t), with support in ¢ >0,

(3.15) f f [y + b f(u)]dxdt =0,

It is easy to verify that for the previously considered class of piecewise continuous
solutions condition (3.15) is equivalent with the jump condition (3.10).

For merely bounded, measurable solutions u; and u, in condition (3.13) have to
be interpreted as follows:

u, = lim inf u(y,?),
y=x, y<x
u, = lim sup u(y,t).

yrx» x<y

For the main existence theorem we refer the reader to [8] and [13], and for unique-
ness to [1], [14], and [16].

It turns out that when a(u) is not monotonic, condition (3.13) is not sufficient to
guarantee unique determination of solutions by their initial data. A replacement for
this condition has been found by Oleinik; this condition, together with the existence
and uniqueness theorem is described in [15]; other interesting discussions of this
condition are contained in [4], [6], and [16].

4. The decay of solutions. Existence and uniqueness of solutions is not the
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end but merely the beginning of a theory of differential equations. The really in-
teresting questions concern the behavior of solutions.

Here we shall study the asymptotic behavior for large time of solutions of con-
servation laws of form (3.1) which satisfy condition (3.14); we assume that a(u) is an
increasing function of u.

As remarked in Section 3, any differentiable solution u is constant along
characteristics

@D & ) =f(w).

Let x,(¢) and x,(¢) be a pair of characteristics, 0 < t < T. Then there is a whole one-
parameter family of characteristics connecting the points of the interval [x,(0), x,(0)],
t = 0 with points of the interval [x,(T), x,(T)], t = T} since u is constant along these
characteristics, u(x,0) on the first interval and u(x,T) on the second interval are
equivariant, i.e., they take on the same values in the same order. Since equivariant
functions have the same total increasing and decreasing variations, we conclude that
the total increasing and decreasing variations of a differentiable solution between
any pair of characteristics are conserved.
Denote by D(¢) the width of the strip bounded by x, and x,:

4.2) D(t) = x,5(t) — x,(t) > 0.
Differentiating (4.2) with respect to ¢ and using (4.1), we get

“3) DO = T = S~ auy) - a(u,).

Integrating with respect to ¢ we get
4.4 D(T) = D(0) + [a(u,) — a(u,)]T.

Suppose there is a shock y present in u between the characteristics x; and x,
(see Fig. 7). Since according to condition (3.13) characteristics on either side of a
shock run into the shock, there exist for any given time T two characteristics y, and
v, which intersect the shock y at exactly time 7. Assuming that there are no other
shocks present we conclude that the increasing variation of u on (x,(¢), y,(?)), as
well as on (x,(2), y,(?)), is independent of ¢. According to condition (3.14), u decreases
across shocks, so the increasing variation of u along [z,(T),x,(T)] equals the sum
of the increasing variations of u along [x,(0), y,(0)] and along [y,(0), x,(0)]. This
sum is in general less than the increasing variation of u along [x,(0), x,(0)], therefore
we conclude that if shocks are present, the total increasing variation of u between
two characteristics decreased with time.

We give now a quantitative estimate of this decrease. Let I, be any interval of
the x-axis; we subdivide it into subintervals [y;_;,y;], j=1,---,n in such a way
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that u(x,0) is alternately increasing and decreasing on the intervals (we here assumed
for simplicity that u, is piecewise monotonic). We denote by y;(¢) the characteristic
issuing from the jth point y;, with the understanding that if y(¢) runs into a shock,
y;(t) is continued as that shock.

It is easy to show that for any ¢ > 0, u(x,?) is alternately increasing and decreasing
on the intervals (y;-4(¢), y;(t)). Since a is an increasing function of u, and since
according to (3.14) u decreases across shocks, the total increasing variation
A*(T) of a(u) across the interval I(T) = [yo(T), y(T)] is
(4.5) .fdid a(u(T) — a(u;-(T)) = A*(T),

Jjo
where u;_,(T) denotes the value of u on the right edge of y;_,(T), u;(T) denotes
the value of u on the left edge of y(T); in case y;_,(T) and y(T) are the same, the
jth term in (4.5) is zero. Suppose y;_;(T) and y(T) are shocks; then there exist
characteristics x;_,(t) and x;(t) which start at ¢ = 0 inside (y;_;,y;) and which at
t =T runinto y;_,(T) and y«(T) respectively. The value of u along x(#) is u(T).
Denote x;(t) — x;-,(f) by Dy(t); according to (4.4)

D{(T) = Dy0) + [a(u;) — a(u;_)]T.
Summing over j odd and using (4.5) we get
4.6) ZD{(T)= ZD;0)+ A+(T)T.

Since the intervals [x;_,(T),x,(T)] = [y;-1(T),y,(T)] are disjoint and lie in I(T),
their total length cannot exceed the length L(t) of I(T); so we deduce from (4.6) that

L(T)
T 2

where A+(T) is the total increasing variation of a(u) along I(T).

4.7 AX(T) =
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Let u(x,t) be a solution of (3.1), possibly discontinuous, whose initial values are
bounded, and zero outside a finite interval I,. Since signals propagate with finite
speed, for every t the solution u(x,?) is zero outside some finite x-interval I(?).
Denote by v(f) and w(t) the values of u at the left and right endpoints of I(t) respec-
tively. Since the endpoints may lie on shocks, these values need not be zero, however
it follows from (3.14) that

4.8) v(t) 20, 0 =< w(t).

Denote by s,¢, and s, the speed with which the shocks at the endpoints propagate;
according to the jump relation (3.10).

f(v) - f(0) f(w) = f(0
(4.9) Steft = —‘(‘”-v——“a Sright — ”‘“‘7—2 .
Since a is an increasing function of u, f(u) is convex. It follows from the mean value
theorem that the difference quotient of f over an interval is not less than f’ at the
left endpoint, and not greater than f’ at the right endpoint of that interval. So it
follows from (4.8) that

@10 0O IDIO Ly,

)

At this point we assume that a is strictly increasing, i.e., that for some positive
number k

(4.11) O<k=a';

here we abbreviate d/du by prime. It follows that inequalities (4.10) are strict;
combining these with (4.9) we can put them into this form

(4'12) Sright — Steft é B[G(W) - a(v)]’

where 0 is < 1.
Denote the length of I(t) by L(f); since s, and s, are the speeds with which

the endpoints of I move,

dL

(4.13) ar = Sright — Steft*

Substituting the inequalities (4.12) into (4.13) we get
A < ola(w) - )]

Since by (4.8) v < w, a(w) — a(v) is bounded by the total increasing variation A*(¢)
of a(u) over I(t):

(4.14) a(w) — a(v) S A*+(1).
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Combining the last two inequalities we get

dL
—< +
oS 04().

Using inequality (4.7) we get

s

dL _ 6
dt TL(t)’

and multiplying by ¢t~ we deduce that
d -9
— E) <
T (L) 0.

Thus ¢~°L(t) is a decreasing function of time; in particular
(4.15) L) £ t°LQ1) for ¢t > 1.
Substituting this into the right side of (4.7) we get

AT = 7LQ).

Since 6 < 1, this shows that A*(#)—> 0 as t — 0.

It follows from the strictly increasing character (4.11) of a(u) that the total
increasing variation of u along I(t) is bounded by A+(t)/k. Since u is < 0 at the left
endpoint of I(t) and = 0 at the right endpoint, it follows that likewise the maximum
m(t) of u(x,t) over I(t) is bounded by A+(t)/k;

(4.16) m(t) < A*(1) k.

Combining this with the above estimate for A* we get that m(t) < const *~! which
shows that the maximum of u at time t tends to zero like **.

This result is somewhat crude; a more detailed analysis will furnish a more
precise result. (A different derivation was given by Barbara Quinn in her dissertation
at New York University, 1970.) We start by expressing f(r), f(w) in (4.9) by their
Taylor expansions; we get

s = SO+ 'O+ 1O,
(4.17)
Su = 1'(0) + S Ow+ ¢S "W,

wherev<9V<0, 0<w<w,
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Denote by K an upper bound for f; since m is an upper bound for I I and w,
it follows that

St 2 10) + — [ﬂ®+K4

Seig = f@+—{ﬂ®+54

Substituting this into (4.13) we get

(4.18) ‘Z‘ <L [f”(O) + K m] (W — ).

It follows from (4.11) and (4.14) that

a(w)—a(v) A+(t)
(4.19) w—v= 2 =%

The constant k in (4.11) has to be a lower bound of a’ = f"(u) for |u| Sm; in
particular we can take

(4.20) k =f"(0) —
Substituting this into (4.19) and then into (4.18) we get that for m small enough
dL _ 1 [f"(0)+ K/3m 1
— £ |4 £ = +
4.21) =7 [f”(O)—Km A+ £ (2 + Hm )A*.

We substitute into (4.21) estimate (4.16) for m, and then estimate (4.7) for 4™ ; we
obtain the following inequality:

dL H L\ L
*.22) m—F+7ﬁ7-
Introduce a new variable J by L = J,/t; (4.22) becomes
aJ H J2
<=
v At Tk 1

Dividing by \/ t J? we get, after integrating from T to ¢ > T, that

L _H (_1__ _ _L)
JT) J@o T2 \JT i)
which implies that

1 __H _ 1
J(T) 2kJT = J@)°

According to (4.15), L(T)/T = J(T)/{/T tends to 0 as T — co; this implies that

(4.23)
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for T large enough, the left side of (4.23) is positive. Then (4.23) furnishes an upper
bound for J(¢t) for all t > T. The boundedness of J(¢) implies that L(¢) is O(\/ 1) as
t — co. Combining this with the estimates (4.7) and (4.16) we reach the following
conclusion.

THEOREM 4.1.  Let u be a possibly discontinuous solution of the conservation
law u, + f, =0, where f is three times differentiable and strictly convex. Suppose
that all discontinuities of u satisfy (3.13), and that u(x,0) has compact support.
Then

(a) the length of the support of u(x,t) is 0(|/1),

(b) Max, |u(x,1)| = O(1/{/1).

It turns out that this result is rather precise: Using an explicit formula one can
show, see [9], that the length of the support of u divided by /¢ tends to a limit,
and so does \/t Max |u|.

We turn now to solutions which are periodic in x:

u(x + p,t) = u(x,t).

We take I(T) to be any interval of length p at time T'. According to our basic estimate
(4.7), the increasing variation of a(u) per period is < p/T. It follows then from (4.11)
that the increasing variation per period of u itself does not exceed p/kT. Since u is
periodic, its decreasing and increasing variations are equal, and serves as bound for
the oscillation of u, in particular for the deviation of u from its mean value per period.

For a periodic solution u(x,t), the flux f at (0,t) equals the flux at (p,); thus the
total flux into an interval of length p is zero, and so the mean value of u,

1 P d
=— u(x,t)dx,
pﬁ) 1)

is independent of t. We summarize our results as follows:

THEOREM 4.2. Let u(x,t) be a possibly discontinuous solution of u, + f, =0, f
strictly convex, f” > k > 0. Suppose that all discontinuities of u satisfy (3.13) and
that u is periodic in x with period p. Then

(a) The total variation of u at time t does not exceed 2p [kt,

(b)
(4.29) |u(x,0) — @] < 1/kt,
where @ is the mean value of u.

Again it can be shown that (4.24) is sharp, i.e., that
(4.25) lim ¢ max|u(x,t) — @| = k = f"(0).

t—+

The surprising, almost paradoxical feature of inequality (4.24) is that it holds
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uniformly for all solutions with period p; it is independent of the amplitude of the
initial disturbance. All that the initial amplitude can influence is the time when the
asymptotic estimate (4.24) becomes accurate: The larger the initial amplitude, the
sooner (4.25) converges. This is in sharp contrast to the linear case where the asymp-
totic amplitude of a signal for large time is proportional to its initial amplitude, but
the time it takes to reach the asymptotic shape is independent of the initial amplitude.

Let u,(x) be an initial function which is zero outside the interval [0, p], and
define u,(x) to be equal u,(x) in [0, p], and periodic (see Fig. 8).

According to Theorem 4.1, u,(x,t) decays like 1/./t; u,(x,t) on the other hand is
periodic,! so its asymptotic behavior is governed by Theorem 4.2: u,(x,t) decays
like 1/t. So we have the paradoxical result that u,, which represents a much larger
initial disturbance than u,, nevertheless decays faster than u,.

| i f\l T , )
2

P X
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5. Systems of conservation laws. Models which are at all realistic are governed
by a whole system of conservation laws, rather than by a single one. The value of
what we have learned about single equations lies in the light this knowledge sheds
on systems. It turns out that the main phenomena we have found: the breakdown of
continuous solutions, the necessity of imposing an entropy-like condition to dis-
tinguish those discontinuous solutions which are physically realizable from those
which are not, and the decay of solutions as ¢ — oo, have their counterparts for sys-
tems. That is not to say that the theory is as far advanced for systems as it is for
single equations; on the contrary, what we have is a sea of conjectures, confined
partly by the shores of numerical computations, with a few islands of solidly proved
mathematical facts.

What are the proven facts about systems? In [10] the author has shown that
solutions of 2 x 2 systems of conservation laws break down after a finite time, unless
the initial data satisfy a monotonicity condition. In [9], an analogue of the entropy
condition (3.13) is described, and a condition for genuine nonlinearity is given. In
[15], Oleinik gives a uniqueness theorem for solutions of systems of two conservation
laws of which one is linear, In [2], Glimm solves the initial value problem for systems,
for initial data with small oscillation. In [5], Johnson and Smoller solve the initial
value problem for initial data which satisfy a certain monotonicity condition, for
2 x 2 systems which satisfy a certain convexity-like condition. The only existence

1 Solutions whose initial values are periodic are periodic for all #; this follows from the uniqueness
theorem that solutions which are equal at ¢ = 0 are equal for all £ > 0.



1972] THE FORMATION AND DECAY OF SHOCK WAVES 241

theorem with no restrictions on the initial data is due to Nishida, [12], and works
only for the system

1

u,+0v,=0, v,—(a—) =0.
X

In [3], Glimm and the author prove the decay of solutions with small oscillation
of 2 x 2 systems. The method described in Section 4 is taken from that paper.

For those who wish to work in this field I recommend Glimm’s paper [2]. It contains a wealth
of ideas, such as the use of an approximation scheme containing a sequence of random parameters;
the scheme is shown to converge for almost all values of the parameters. Glimm also introduces
novel, nonlocally defined functionals; the estimate of the growth and decay of these functionals
plays a crucial role in the existence theorem.

This article is an expanded version of an invited address delivered at the January 1970 meeting
of the MAA at San Antonio, Texas. Other versions of this talk were given at Oregon State University,
Corvallis; Texas Tech. University, Lubbock, and at Brown University. The talk is partly based
cn the joint paper [3]) with James Glimm.

References

1. A. Douglis, An ordering principle, Comm. Pure Appl. Math., 12 (1959) 87.

2. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm.
Pure Appl. Math., 18 (1965) 697-715.

3. J. Glimm, and P. D. Lax, Decay of solutions of systems of nonlinear hyperbolic conserv-
ation laws, Mem. Amer. Math. Soc., No. 101 (1970).

4. E. Hopf, The partial differential equation u, + uu, = uu,,, Comm. Pure Appl. Math., 3
(1950) 201-230.

5. J.L.Johnson, and J. Smoller, Global solutions for an extended class of byperbolic systems
of conservation laws, Arch. Rational Mech. Anal., 32 (1969) 169-189.

6. S. Iv. Krushkov, Results on the character of continuity of solutions of parabolic equations
and some of their applications, Mat. Zametki, 6 (1969) 97-108.

7. , First order quasi-linear equations in several independent variables, Math. USSR
Sbornik, 10 (1970) No. 2.

8. P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computa-
tion, Comm. Pure Appl. Math., 7 (1954) 159-193.

9. , Hyperbolic systems of conservation laws, II, Comm. Pure Appl. Math., 10 (1957)
537-566.
10. , Development of singularities of solutions of nonlinear hyperbolic partial differen-

tial equations, J. Mathematical Phys., 5 (1964) 611-613.

11. , On a notion of entropy, Proc. of Symposium at the University of Wisconsin, 1971,
ed. E. Zarantonello.

12. T. Nishida, Global solutions for an initial value problem of a quasilinear hyperbolic system,
Proc. Japan Acad., 44 (1968) 642-646.

13. O. A. Oleinik, Discontinuous solutions of nonlinear differential equations, Uspehi Mat.
Nauk, (1957) 3-73, English Translation in Amer. Math Soc. Trans., Ser. 2, No. 26, pp. 95-172.

14. , On the uniqueness of the generalized solution of the Cauchy problem for a non-
linear system of equations occurring in mechanics, Uspehi Mat. Nauk, 78 (1957) 169-176.

15. , Uspehi Mat. Nauk (N. S.), 14 (1959) 165-170.

16. B. Quinn, Solutions with shocks, an example of an L,-contractive semigroup, Comm. Pure
Appl. Math., 24 (1971).




	Article Contents
	p. 227
	p. 228
	p. 229
	p. 230
	p. 231
	p. 232
	p. 233
	p. 234
	p. 235
	p. 236
	p. 237
	p. 238
	p. 239
	p. 240
	p. 241

	Issue Table of Contents
	American Mathematical Monthly, Vol. 79, No. 3 (Mar., 1972), pp. 227-326
	Front Matter
	The Formation and Decay of Shock Waves [pp. 227-241]
	Infinitesimals [pp. 242-251]
	Fidelity in Mathematical Discourse: Is One and One Really Two? [pp. 252-263]
	Mathematical Notes
	Complete Orthonormal Systems in Pre-Hilbert Spaces [pp. 263-267]
	Haar Integrals on Topological Rings [pp. 267-270]
	Gregory's Method for Numerical Integration [pp. 270-274]

	Research Problems
	Polytopes and Translative Equidecomposability [pp. 275-276]

	Classroom Notes
	A Familiar Constructibility Criterion [pp. 277-278]
	A Characterization of Compact Subsets of E [pp. 278-279]
	Finite Geometries on a Torus [pp. 279-282]

	Mathematical Education
	A Laboratory and Computer Based Approach to Calculus [pp. 282-290]
	A Computer Laboratory Course for Calculus and Linear Algebra [pp. 290-293]
	Computers and Experimentation in Mathematics [pp. 294-295]
	The MAA and the Two-Year College [pp. 296-301]
	The U.S.A. Mathematical Olympiad [pp. 301-302]

	Problems and Solutions
	Elementary Problems: E2293-E2294,E2343-E2348 [pp. 302-304]
	Solutions of Elementary Problems
	E2277 [p. 304]
	E2287 [p. 304]
	E2288 [p. 305]
	E2290 [pp. 305-306]
	E2291 [p. 306]
	E2292 [pp. 306-307]

	Advanced Problems: 5842-5847 [pp. 307-308]
	Solutions of Advanced Problems
	5746 [pp. 308-309]
	5776 [pp. 309-310]
	5778 [p. 310]
	5781 [pp. 310-311]


	Reviews
	Review: untitled [pp. 311-312]
	Review: untitled [pp. 312-313]
	Review: untitled [pp. 313-314]
	Review: untitled [pp. 314-315]
	Review: untitled [pp. 315-316]
	Telegraphic Reviews [pp. 317-324]

	News and Notices [p. 325]
	Mathematical Association of America: Official Reports and Communications
	November Meeting of the Maryland-District of Columbia-Virginia Section [p. 325]
	Calendar of Future Meetings [p. 326]
	Future Meetings of Other Organizations [p. 326]

	Back Matter





