Zaphod Beeblebrox’s Brain and the
Fifty-ninth Row of Pascal’s Triangle

Andrew Granville

1. INTRODUCTION. A popular problem for an introductory combinatorics course
is to prove that

The number of odd integers in any row of Pascal’s 1
triangle is always a power of 2. (1)

There seem to be two approaches to this question. The first uses the following
remarkable observation of Kummer (which was made in 1855):

For any prime p and positive integers n > m > 0, the

exact power of p that divides the binomial coefficient ( r’rlz ) )
is given by the number of ‘carries’ when adding m and
n —m in base p.

Thus the binomial coefficient () is odd if and only if we have no carries when
adding m and n — m in base 2.- A moment’s thought and we see that this is
equivalent to the statement that the set of 1’s in the binary expansion of m is a
subset of the set of 1’s in the binary expansion of n. Therefore the number of odd
binomial coefficients ( ,’;,) with n > m > 0 is given by the number of distinct
subsets of the set of 1’s in the binary expansion of n, which is precisely 2#2,
where #,(n) is the number of 1’s in the binary expansion of n. (This was first
proved by Glaisher in 1899.)

The second, more elegant, approach is significant in the area of cellular
automata (see [7]):

We start by replacing each entry of Pascal’s triangle with an asterisk (“*”) if it is
odd, a blank (¢ ”) if it is even. The problem above begins to count the number of
asterisks in each row. Moreover, the normal rule of construction of Pascal’s
triangle (an entry equals the sum of the two immediately above) becomes a very
simple binary rule:

An entry is an asterisk if and only if one of the entries immediately above is “*”
and the other is blank. In FIGURE 1 we show this graphically:

T B G

FiG. 1. The rules for addition (mod 2).
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Thus Pascal’s triangle itself looks like

* k % % % % % ¥ * ¥ ¥ ¥ *x ¥ ¥ *

FiG. 2. The .odd elements of Pascal’s triangle (mod 2).

Continue Ficure 2 for a few lines, stare at it, and a clear pattern begins to
emerge: For every fixed k > 0, a triangle, T}, is formed by the first 2% rows (that is
the coefficients (7) (mod?2), for 0 <m <n < 2% - 1). T, is then constructed
by putting three copies of 7}, in a triangle, with all blanks in the middle:

Teor =
Tk

FiG. 3. The construction of the first 2¥*! rows of Pascal’s triangle (mod 2) from the first 2k,

The proof that row n has precisely 2#2™ odd entries, follows easily from
induction on k: For given n, there exists a k such that row n belongs to T, ,, but
not 7},. Now, as in FIGURE 3, we see that row n (modulo 2) is composed of two
copies of row m(:=n — 2*) with some blanks in the middle. Therefore, row n
contains twice the number of asterisks of row m, namely, 2.2#2™ (by induction) =
2 #a(n)

Many authors have worked on the corresponding problem of counting the
entries of a given row of Pascal’s triangle, that are not divisible by some fixed
prime p. The first approach above works easily to give an exact count (see [5]);
however the pictures generated by the second approach above are much more
interesting, and are really rather pretty (see [7)).

In the autumn of 1988, I presented these ideas as part of an introductory
combinatorics course at the University of Toronto. One student asked whether a
similar result holds when one counts the number of entries that belong to the
congruence class 1{mod 4), in a given row of Pascal’s triangle. As I didn’t know the
answer, I suggested that the class compute the first few lines of Pascal’s triangle
(mod 4) to see if any pattern emerged. When they did so it transpired that the
student had asked a very good question: We observed that the odd entries of row n
of Pascal’s triangle are either all = 1(mod4) or are split equally between the
arithmetic progressions 1 (mod4) and —1 (mod4). Thus it seemed that the
number of entries = 1(mod 4) in row 7 is either 2#2"™ or 2#2(M~1 and the number
= —1(mod 4) is either 0 or 2#2M~1 respectively.

After class, I went to the library to find out whether this had previously been
observed and how to prove it (it didn’t seem to follow from any straightforward
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modification of either of the two methods above). Rather surprisingly this pattern
had not been noticed, and as it seemed unlikely that such an attractive result
would be unknown, I started to think that perhaps the pattern eventually ended.
However, after computing the first 60 or 70 lines of Pascal’s triangle (mod 4), I
found that, not only did this pattern continue to emerge, but I could even guess
how to distinguish between the two cases above:

The number of entries = 1(mod 4) equals the number of
entries = —1(mod 4) in row n if and only if there are
3 , . ; . ] (2)
two consecutive 1’s in the binary expansion of n;
otherwise there are no entries = —1(mod 4) in row n.

At the next class Rajesh Goyal, one of the computer science students attending,
volunteered to draw two diagrams similar to FIGURE 2; the first with an asterisk
only for entries = 1(mod4); the second with an asterisk only for entries =
—1(mod 4). We present these diagrams in FIGURE 4.

* %
* %
* * *%
* *
* % **
* * * ¥
* ¥ * % * k% ¥
* *
* % * %
* ¥ * ¥
* * * * *% **
* * * *
* % ** *% * %
* * * * * ¥ *
*#' *% ** "* *% *Ek¥ *%*
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* * * * * % * ¥
* * * % * % * * * k¥ * * k% *
* * * *
* % *k * ¥ *%
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* * **% ** * * *% * * * * *k
* * * * * * * *
* % * % ** ** ** ** * % * ¥
* * * * * * * * * * * * ¥ * * *
** *% **% **% *k *% *% ** *% *k *% k¥ *k ** *%
1 (mod 4) —1 (mod 4)

FiG. 4. The odd elements of Pascal’s triangle (mod 4).

As you can see, no predictable pattern leaps out, though certain members of the
class were convinced that they could distinguish a maple leaf insignia! I suggested
that Rajesh now draw Pascal’s triangle again, this time placing all the odd entries
in the same picture, but assigning different colours to the entries that were 1
(mod 4) and —1 (mod 4). Unfortunately no recognizable pattern evolved, and so
the class returned to the course syllabus.

A few weeks later, still frustrated by this question, I came across a passage in
Douglas Adams’ science fiction/comedy novel The Hitchhiker’s Guide to the
Galaxy. There, Zaphod Beeblebrox, who has been acting unaccountably (even to
himself), decides to run a series of tests on his two brains to see what is wrong.
Having tried all the “standard” tests and having found nothing wrong, he proceeds
to superimpose the X-rays of his two brains and look at the image through a green
filter, which exposes, to his astonishment, the cauterized initials of the culprit who
has been tampering with his heads!

It occurred to me to try a similar approach to our problem with Pascal’s
triangle. The idea was to colour those entries that are 1 (mod 4) blue, those that
are —1 (mod 4) yellow, and leave the rest blank. Then, by superimposing different
subtriangles of Pascal’s triangle, to observe whether any pattern emerges (using the
natural rules blank + blank = blank, any colour + blank = that colour, 2 times a
particular colour = that colour, and blue + yellow = green). To my delight, this
worked! To explain what happened, define U, to be the triangle made up of the
first 2% rows of Pascal’s triangle, coloured blue, yellow and blank as above (note
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that by altering the blue and yellow squares of U, to asterisks, we get T}). By
Ficure 3, and the fact that Pascal’s triangle is symmetric about a vertical line
drawn down its centre, we see that

Ugir = %

Fic. 5. The structure of Pascal’s triangle (mod 4).
for some triangle V,, where V;[ is defined to be the reflection of V, about a
vertical line down its centre. So, if we wish to determine U, ,; then, by Figure 5,

we must address the problem of determining V. By looking at a few such triangles
V., it is easy to spot the pattern given in FIGURE 6.

S
/A

Fic. 6. The structure of V, ., (mod 4).

Here W, is some unknown pattern of yellow and blue. To try to find a simple way
to derive W,, I then used the Beeblebrox method to compare W, with various
other matrices and surprisingly found the important fact needed:

When we superimpose W, onto V[, every entry is either green or blank. In
other words, the entry of W, corresponding to a given entry e of VL is blank if e
is blank, yellow if e is blue, and blue if e is yellow. We represent this in FIGURE 7
for k =0,1,2,3, using ® for blue, @ for yellow, and B for green (since this
journal is monochromatic!):

Vo . Wy
X K
SN2

X
W,
Vi % ® 1
&
V2 WZ
@)

S

FiG. 7. The Beeblebrox method—Superimposing the transpose of V; onto W,.
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Given the observation in FiGUrRE 7, which gives a complete description of the
‘growth’ of Pascal’s triangle (mod 4), it is relatively simple to confirm (2). We again
proceed by induction on n: Choose k so that 2¥ < n < 2%*!, Using FIGURE 5 we
see that row n of Pascal’s triangle is given (from left to right) by row n,(:=n — 2¥)
of V,, some zeroes and then row n, of V,’. Thus the number of elements of row 7,
congruent to j(mod4) (for j = 1 or —1), is twice the number of such elements in
row n; of V,.

Now, if n; < 2%~ then using FIGURE 6 we see that row n, of V, is precisely
row n, of U,_,, and so of Pascal’s triangle itself. (2) then follows from the
induction hypothesis, by noting that (n), contains consecutive digits 11 if and only
if (n,), does.

If n, > 2*~! then using FIGURE 6 we see that row n, of V) is row n,(:=n, —
2k=1) of V,_,, then some zeroes, followed by row n, of W,_,. Now by the
observation in FIGURE 7, the number of elements of row n, of W,_, that are
congruent to j(mod 4) (for j = 1 or —1) is precisely the number of elements of row
n, of V,_, that are congruent to —j (mod4), and so we see that row n; of V,
contains the same number of elements = 1(mod4) and = — 1(mod 4). Of course,
as 11 are the left most digits of (n), (as n, = 2¥~1), the equation (2) follows
immediately.

It remains only to prove the truth of the observations explained by FIGUREs 6
and 7, which we do in the next section, a fairly straightforward task.

Having established that the number of odd integers in any given row of Pascal’s
triangle is a power of 2, and that the number = 1(mod4) (or = —1(mod 4)) is,
likewise, either 0 or a power of 2, it now seems reasonable to investigate the
numbers of integers in each row that are congruent to 1, 3, 5 or 7 (mod8).
Preliminary computations indicate what we might expect from the results that we
have already obtained:

In each row of Pascal’s triangle, the number of integers
in each of the arithmetic progressions 1, 3, 5 and 3)
7 (mod 8) is either 0 or a power of 2.

Having computed that (3) holds true in the first 50 or so rows of Pascal’s
triangle, we will now try to prove (3) using the same sort of approach that we used
to prove (2).

First, though, let’s incorporate FIGUREs 6 and 7 into one diagram, into the form
we shall actually prove in Section 2: Define, for a subtriangle 4 of Pascal’s triangle
(mod 4), —A to be the triangle 4 with blanks the same and the colours blue and
yellow swapped around. Then we have

Fic. 8. The structure of U, , , (mod 4).
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Thus we may think of U, ,, being formed from U, ,, as follows: Cut U, ., into the
four triangles of Ficure 5. Then multiply, element by element, the entries of these
triangles by the triangle M (which is given in FiIGURE 9 below) which gives V, _ ;;
similarly multiplying by M T gives V,”, ;. This is illustrated in FIGURE 9:

A &b A)

FiG. 9. The action of the growth triangle (mod 4).

This ‘triangle’, M(= M,), we will call the growth triangle (mod 4). So, to begin to
prove (3),-we attempt to find a growth triangle (mod 8); and later to start a proof of
the corresponding statement (mod 16), we will find a growth triangle (mod 16).
For fixed positive integer b, define D, to be the first 2% — 1 rows of Pascal’s
triangle (mod 2?), with all even entries replaced by 0. Define E, as in FiGure 10.

Dy

VL

Fic. 10. Structure of D, (mod 2%).

Dyy1 =

In order to determine D, ., from D, we must be able to find E, from D,. For
b = 1 and 2 this is done as above by noting that E, = D, * M, foreach k > b — 1
where M, = Aand M, is as in FiIGURE 9. More generally, we shall prove, in
section 2, that

E,=D,+*M, foreachk >=b—1, 4)
where the triangle M, (containing 3°~! non-zero subtriangles) remains to be

specified. We give the examples for b = 3 and 4 in Ficure 11 (which you can
test!).

Fic. 11. The growth triangles.(mod 8) and (mod 16).
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Note that we could have formulated (2) in a similar way to (3):

In each row of Pascal’s triangle the number of integers in
each of the arithmetic progressions 1 and —1(mod 4) is
either 0 or a power of 2.

The reason that we gave the rather more precise statement (2) is that it fit easily
into our induction hypothesis. Similarly, we will reformulate (3) so that the
statement fits easily into an induction hypothesis. Note first, though, that in order
to use the last row of Mj it is necessary to ‘cut up’ the row of Pascal’s triangle into
four quadrants. Of course, it isn’t really necessary for the second and third rows, as
there are only two halves, and Pascal’s triangle is symmetric. The last row of M, is
only used when transforming row m into row n = 2¥*! + m where m is of the
form m =2%+ 2“1+ r and 0 <r < 2¥~!' — 1. For such rows m we will de-
scribe only the first two quadrants as the other two may be deduced from
symmetry.

If (n), contains no 11 and no 101 then all entries are = 1(mod 8).

If (n), contains no 11 but has a 101 then there are an
equal number of entries = 1 and 5(mod 8).

If (n), contains both a 11 and a 101, or it contains a

1111, then there are an equal number of entries in each 3)
of 1, 3, 5 and 7(mod 8), and similarly in each quadrant

(when relevant).

If n does not belong to any of the cases above then, in
binary, it has the form given in FIGURE 12.

(n)2=11...10 0...01 1...1 -=- 0 0...01 1...1 ---
1.1

—_—————— e —

ty Is u; 0s t, 1s Uy, 0s t,. 1s

Fig. 12. The binary structure of » in the remaining cases. (Here each u;>2andeach t;=1,20r3)

Ift, = 2 and all other t; = 1, then all entries of the first
quadrant are = 1(mod 8) and all entries of the second
quadrant are = 7(mod 8).

If t; = 2 and each other t; = 1 or 3 (and at least one
t; =3), then there are equal numbers = 1 and 3(mod 8)
in the first quadrant and there are equal numbers = 5
and 7(mod 8) in the second quadrant. (3)

If not as above and if each t; = 1 or 2 then there are
equal numbers = 1 and 7(mod 8).

If not as above and if each t; =1 or 3 then there are
equal numbers =1 and 3(mod 8).

Otherwise there are equal number of entries (in each
quadrant, when relevant) = 1, 3, 5 and 7(mod 8).

The proof of this statement is straightforward, though lengthy. The advantage of
(3) is that it is easy to prove and (3) can be deduced immediately; we leave
checking the details to the reader!
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After proving (2) and (3) one now wishes to generalize our result to the odd
residue classes (mod 16), then (mod32), etc. An obvious problem is that the
statement corresponding to (2) and (3) for Pascal’s triangle (mod 16) promises to
be extraordinarily long. However, as such a statement might provide the clues
necessary to guess at the correct statement in the general case—an odd arithmetic
progression (mod 2 to an arbitrary power)—it seems worth finding. I worked on
this problem for several days, but the statement just seemed to be getting ever
longer!

Wishing to reduce the amount of work necessary, I asked my colleague, Yiliang
Zhu, to run some programs on his computer to test a few ideas. The results that
we got were unexpected—it seemed that most of our ideas failed. Nonetheless,
certain that such a proof must exist, we did a number of other computations. Our
efforts were not rewarded; nothing seemed to work. Finally, we simply printed out
the first 128 rows of Pascal’s triangle, (mod 16), and made a visual inspection to see
if we could deduce any new patterns. And there it was, the reason that things
didn’t seem to work—Row 59. ' We give the first half in FiGure 13:

1,11,15,13,0,0,0,0,7,13,1,3,0,0,0,0,1, 11, 15,13,0,0,0,0, 15,5,9,11,0,0

Fig. 13. Half of Row 59 (mod 16) (with 0 (mod 2) denoted by 0).

Unbelievably, there are exactly six entries of Row 59 in each of the congruence
classes 1, 11, 13 and 15 (mod 16)! Our pattern has come to an end, but not before
providing us with some interesting mathematics, as well as a couple of pleasant
surprises.

2. THE GROWTH TRIANGLES. In the previous section all the assertions that we
used in the proofs of (2) and (3)Y were justified there, except for the existence of
the growth triangle, i.e. the formula (4). That is, we need to show that if

2k <n < 2% j<n/2, and (’;) is odd, ®))
then the ratio
(?)/(7)(mod2b), where m = n — 2%,

is fixed according to the position of (';’) in a similar triangle with 2°~! rows. More
precisely, we must prove

Proposition 1. Let b be a positive integer and suppose j, k and n are integers
satisfying (5), with k > b — 1. Define

m = [m/2k+l—b], n = [n/2k+1—b]
and
i =[i/2*1-*], where m = n — 2*. (6)

BT =) moaz. 0
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M, is therefore a triangle with 2°~! rows. The nth row has 2n — 1 entries and
the (n, k)th entry is given by

n+26-1-1 n—1 n—1

k-1 k-1| (mod2®) ifboth k and | ¥~ 1 | are odd;
2 2 2

0 otherwise.

In order to prove Proposition 1 we shall prove a result that allows us to compute
binomial coefficients in modular arithmetic: In 1878 Lucas gave a simple formula
for any binomial coefficient () (mod p), when p is prime, in terms of the digits of
m and n when they are written in base p. When ( ) is not divisible by p, this
formula can be rewritten as

(5=t ) oot

where n; (and similarly, m,) is defined as the least non-negative residue of n
(mod p) (note that (*) provides an easy way to determine whether p divides (7).
By iterating (8) it is very easy to compute () (mod p). We will prove a generaliza-
tion of this formula for binomial coefficients (mod p®) for arbitrary positive
integers b.

Propesition 2. Suppose that prime p is given. For each positive integer j, define n; to
be the least non-negative residue of n (mod p’). If p does not divide ( ) then

ny_ (/e[ /[ [n/P]
(m) - ([m/p] (mb)/([mb/l’]

for any positive integer b.
We notice two immediate consequences:

(mod p°®), 9

Corollary 1. If p does not divide () and m = n (mod p®) then (r)= ([”/”])

[m/p]
(mod p?).
By iterating this we get

Corollary 2. If p does not divide () and m = n (mod p*) where k = b — 1 then
('r’rl) = ( [n/p*+1-0] ) (mod pb)'

[m/pk*-l—b]

From this we can easily give the

Proof of Proposition 1: By (*), 2 does not divide () (as there are no carries when
adding m and 2% in base 2), and so (2)= (%) (mod2”) by Corollary 2. By a

n—j

similar argument (" _’j ) ( ) (mod 2%), and so the result follows as

m

) -G/ 2))
G =5) = G cooa

326 ANDREW GRANVILLE [April



Finally we must prove Proposition 2:

Proof of Proposition 2: As p does not divide ( ,';) (by hypothesis), we know that
each digit of n is at least as large as the corresponding digit of m when written in
base p, by (*). Therefore each digit of [n/p], [n/p®], n, and [n,/p] is at least as
large as the corresponding digit of [m/p], [m/p®], m, and [m,/p], respectively,
(in base p), and so, by (*), none of the binomial coefficients in (9) are divisible by
p. This also implies that

[n/p*] = [m/p*] = [(n — m)/p*] = 0. (10)

Now, for any positive integer n,

n
n'=T1T11Ir
j=0r=1
pllir

= I_I 1_[ r pzlzl["/l"],
iz0 r<n/p/
ptr

where p’|ln means that p’ is the highest power of p that divides n. Dividing this
formula by the similar formula for [n/p]! we get

nl/[n/plt=p"?0 [T r. (11)

r<n,ptr

Now, as r =r, (mod p®) for any integer r, we see that the product of those
integers, coprime to p, between any two consecutive multiples of p?, is congruent
to I, , j;,r (mod p?). Similarly, the product of those integers, coprime to p,
between cp® and cp® + d, (for any positive integers ¢ and d), is congruent
(mod p?) to the product of those integers, coprime to p, less than or equal to d.
Therefore

[n/p%]
( I'l r) = ( I r) ( Il r) (mod p°®).
r<n, ptr r<p® ptr r<ny,ptr

The result then follows from combining this equation with (10) and (11) to evaluate

() | ()
( [n/p] ) ( [n,/p] )
[m/p] [m/p]

(mod p?),

and by using the fact (established above) that none of the binomial coefficients in
(9) are divisible by p.

Actually Proposition 2 also provides another proof that if row n contains entries
that are —1(mod4) then » contains a ‘11’ in its binary digit pattern: If row n
contains an entry that is — 1(mod 4), then choose k as large as possible so that row
q = [n/2*] also contains an entry that is — 1(mod 4). Suppose that the entry is (‘j)
By our choice of k, we see that

([q/2]

[r/2] ) = (mod4),
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and so, by (9),

(‘12) - _ [4./2]
"2 [r2/2]
By trying all possibilities for ¢, and r, (note that g, can only take the values 0, 1, 2

and 3), we see that this can only occur for g, = 3 and r, =1 or 2. Therefore g,
has a ‘11’ in its binary digit pattern, and thus so does g and hence .

) (mod4).

3. GROWTH TRIANGLES FOR ARBITRARY PRIME POWERS. The idea of the
growth triangles, used here for powers of 2, may be generalized to arbitrary prime
power moduli. To prove this we need simply prove the following generalization of
Proposition 1:

Proposition 3. Let b be any positive integer, p be a given prime, and j, k and n be
integers satisfying

p¥<n<p**!, k>=b-1 and p+(?).

()= ()5 et

where u, is the least non-negative residue of u(mod p*), for u =j and n, and
u =[u/p**17%] foru =j, j,, n and n,.

Then

Proof: The proof is an almost immediate generalization of that of Proposition 1;
the only real difference is that we re-express the binomial coefficients here in a
slightly more complicated way:

(n) Ny _(n)”—”k V[ n—J
J T Pe )\ J— e i J\ne =)’
We leave it to the reader to complete the details of the proof.
The action of the growth triangle T, for g = p?, is rather different than before,

as we now create (p? + p)/2 new non-zero triangles from each original one—see
FiGURE 14.

A
sz A NA

A
AN

Y/

p=3 AN AT ATAN

FiG. 14. The action of the growth triangle 7, where q is a prime power of p.
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T, is composed of (p? + p)/2 large subtriangles, arranged so that there is one
such subtriangle on the top row, two on the second row,..., and p on the pth
row, with zeroes in between (see FIGURE 14 for this structure). Each of these
subtriangles has p®~! rows, indexed by 0,1,...,p? ! —1, and the ith row
contains 2 + 1 columns indexed by j = 0,1,...,2i. The value of the (i, j)th entry
in the (m + 1)st subtriangle of the (n + 1)st row (of subtriangles) (0 <m <n <
p — 1), reading left to right, is

b—1 4 - . .
np +1 i p e 1

. d p?® f d ( )
mpb_1+j/2)/(1/2) (mod p7) it jisevenand p + | 5

0 otherwise.

Notice that if g = p is prime (that is b = 1) then i and j can only take the values
i =j = 0. Thus the (m + 1st subtriangle of the (n + 1)st row of subtriangles has
only one entry, ( ,',',) (mod p?). Therefore T, is just the first p rows of Pascal’s
triangle (mod p), with a zero between each pair of consecutive entries on each
row. (This result is, essentially, given in [5].)

We give some examples of T,, where g is a power of 3, in FIGURE 15:

/I\
T, = VA Ty = /N /AN
[N/ INNNNNN

A A A
INA BB NN
INNNNNAINNN

FiG. 15. Some examples of T, when q is a power of 3.

The reader should note that if g = 2° then 7, is formed from M, as in FIGURE
16 below.

s
AV

Fic. 16. Constructing T,» from M,,.

4. SELF SIMILARITY MODULO p. A beautiful aspect of the picture of Pascal’s
triangle modulo 2 (FiGURE 2) is that the ‘pattern’ inside any triangle of black
squares is similar in design to that of any subtriangle, though larger in size. If we
extend Pascal’s triangle to infinitely many rows, and reduce the scale of our picture
in half each time that we double the number of rows, then the resulting design is
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called self-similar—that is, our picture can be reproduced by taking any subtrian-
gle and magnifying it.

Many examples of self-similarity have been investigated by Mandelbrot [6]. Such
pictures provide simple mathematical models for natural processes which are
self-organizing (such as the growth of frost on a windowpane).

The process used to generate Pascal’s triangle modulo 2 (FIGURE 1) may be
modified to give further interesting, and sometimes self-similar, configurations:
The patterns given by altering the ‘rules’ of FiGure 1 and the number of
dimensions in the picture, are known as cellular automata. Perhaps the most
interesting example of these is Conway’s Game of Life (see [3]).

Using the final remarks of the previous section we will obtain an interesting
generalization, but in a different direction: In cellular automata, the ‘cells’ have
two possible states—O0 or 1 (off or on, blank or asterisk, dead or alive). However
the entries of Pascal’s triangle modulo k can be in any of k possible
states—0,1,2,... or k — 1. As we shall see below, the idea of self-similarity has
an interesting analogue when we allow many states. As a representation of natural
processes, such cells may be thought of as containing more complex information
than simply whether they are alive or dead; for instance colour, texture or even
gender. Human cells are known to contain complex information, which is passed
on (and sometimes modified) when they replicate: it may be that this process can
be described by automata with a large number of possible states.

We start by reviewing the notion of self-similarity in terms of our growth
triangles: The triangle formed by the first 2%*! rows of Pascal’s triangle (mod 2), is
constructed from three copies of the first 2¥ rows, positioned as in FIGURE 3. An
easy proof of this may be given using induction: Include in the induction hypothe-
sis the fact that the 2*th row of Pascal’s triangle (mod 2) is made up entirely of 1’s.
Then the 2% + 1th row has 1’s on either end, with 0’s all the way in between.
Directly underneath each of these 1’s we get a new triangle, which is formed in
exactly the same way as the initial triangle of Pascal’s triangle; these two new
triangles are independent until they meet. Their meeting occurs at the 2% *!th row,
that is the 2¥th row of each of these new triangles and thus, by the induction
hypothesis, this row is all 1’s. This completes the induction hypothesis.

We now give a similar easy proof for the existence and structure of the growth
triangles 7, for each prime p: Start by noting that the p + 1th row of Pascal’s
triangle (mod p) has 1’s on either end with 0’s all the way in between (this is a
consequence of the elementary fact that p divides (’[’ ) foreach i, 1 <i<p-—1,
which may be deduced from (*)). Directly underneath each of these 1’s we get a
new triangle, which is formed in exactly the same way as the initial triangle of
Pascal’s triangle and these two new triangles are independent until they meet
(which happens in the 2 pth row). Thus the 2p + 1th row has 1 on either end, 2 in
the middle, and 0’s all the way in between. Again we find that directly underneath
each of these 1’s we get a new triangle, which is formed in exactly the same way as
the initial triangle of Pascal’s triangle, but the values underneath the 2 are twice
the values in the initial triangle of Pascal’s triangle. These three triangles meet in
the 3pth row, and thus the 3p + 1th row has 1’s on either end, 3’s at one-third and
two-thirds of the way across and 0’s everywhere else. We get the same triangle
forming underneath the 1’s, but this time 3 times the initial triangle under the 3’s.
We continue this process, and we see that (by an easily constructed induction
hypothesis) the kp + 1th row of Pascal’s triangle (mod p) is a copy of the k + 1th
row, with p — 1 0’s placed between consecutive entries. Finally, when we do this p
times we will have constructed the first p? rows of Pascal’s triangle (mod p) and
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we can start the whole process again, this time with the larger triangle formed by
the first p? rows, as the p? + 1th row (= kp + 1th row with k£ = p) has 1’s on
either end with 0’s all the way in between. We now see how FIGURE 14 explains the
growth of Pascal’s triangle (mod p).

The pattern just proved has a delightful consequence noted by Long [5]: Cut
Pascal’s triangle up into subtriangles of p* rows, where these subtriangles have 1
entry in the top row, 2 entries in the second row,... and p* entries in the p*th
row. The first p* rows of Pascal’s triangle give the only entry in the first row of a
triangle of these subtriangles. Rows p* + 1 to 2p* of Pascal’s triangle provide the
two subtriangles of the second row of this new triangle, after missing out the large
inverted triangle of 0’s in between. Similarly, rows ( — 1)p* + 1 to rp* of Pascal’s
triangle provide the r subtriangles of the rth row of our triangle of subtriangles,
after missing out the r — 1 large inverted triangles of 0’s in between. This resulting
triangle of subtriangles has the most extraordinary property—it still obeys the
binary rule of FiGure 1. That is that any two consecutive subtriangles on a row of
this triangle add together, componentwise (mod p), to give the triangle immedi-
ately underneath.
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