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In the summer of 1976, the University of Illinois had the audacity to use their
postage meter to print the words “Four Colors Suffice” on the outgoing mail. The
words referred to the recently announced computer-aided proof of the very famous
Four-Color Conjecture by Kenneth Appel and Wolfgang Haken (with a significant
contribution by John Koch) at the Urbana campus. Their announcement was
originally greeted with a rather large degree of skepticism by the mathematical
community. This skepticism was not without cause. For about a century there have
been numerous rumors and claims of proofs or counterexamples to the conjecture.
In fact, in 1971 a different computer-aided “proof” by Shimomoto was announced
but later withdrawn after it failed to survive close scrutiny. Furthermore Hakin’s
name had somehow been associated (perhaps unfairly) with this ill-fated work.

Despite this initial skepticism the Appel-Haken proof has withstood over three
years of close examination. It has been published by the highly respected Illinois
Journal of Mathematics [1] and has been accepted by a number of experts
throughout the world.

Let us now review the statement and history of the Four-Color Theorem. The
conjecture was solely the discovery of Francis Guthrie in the early 1850°s. While a
student at University College, London, Guthrie discovered that he could color a
map of England’s counties with only four colors in such a way that each county has
exactly one color, and two counties which share a common boundary line will have
different colors. Furthermore he tried to prove that the counties (i.e., regions) of any
map on the plane could be so four-colored. Not entirely satisfied with his “proof,”
Francis discussed his four-color problem with his brother Frederick, who communi-
cated it to his teacher Augustus De Morgan. On October 23, 1852, De Morgan
discussed the problem in a letter to Sir William Hamilton. Hamilton, perhaps
showing more wisdom than many other mathematicians through the decades,
refused to become involved with the problem.

This is a revised version of a lecture given on April 22, 1978, at the second annual Saturday Morning
Mathematics Conference sponsored by Dean L. H. Lange at San Jose State University.
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Until recently various books and papers stated that the problem of four-coloring
maps was known to ancient cartographers and was discussed by Mobius in the
1840’s. K. O. May [12] put these misconceptions to rest. There is no evidence that
mapmakers knew or were interested in the problem, and it is clear that Mdbius was
interested in a problem which was only superficially related to Guthrie’s problem.
In their excellent book, [6] Biggs, Lloyd, and Wilson explain how the erroneous
Mobius connection probably occurred.

Apparently word of the problem traveled by the mathematical grapevine. By the
1860’s the American logician and philosopher C. S. Pierce was working on the
problem. Arthur Cayley, at a London Mathematical Society meeting in June, 1878,
asked if anyone had proved the conjecture. In 1879, in the American Journal of
Mathematics, A. B. Kempe, a London barrister, gave the first published “proof” of
the Four-Color Conjecture. That is, Kempe “proved” that any map on the surface
of a sphere can be four-colored. For a proper coloring of a map with four colors see
Figure 1, and Figure 2 has an unacceptable coloring of the same map because
Idaho and Nevada share a boundary edge but both have color 1. In addition to the
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“proof” in the American Journal, Kempe announced his result without proof in the
prestigous British journal Nature. Kempe’s work was apparently accepted and
admired widely. In fact because of this work, and with the support of Cayley and
others, Kempe was made a Fellow of the Royal Society. He brought out improved
versions of the “proof.” P. G. Tait at the University of Edinburgh soon outlined yet
another “proof.” Lewis Carroll (C. L. Dodgson) made a game in which one player
made a map which his opponent needed to four-color. In 1886 the headmaster of an
English boys’ school posed the problem as a challenge to his school boys, but with
the proviso that “no solution may exceed one page, 30 lines of manuscript, and one
page of diagrams.” (Keep in mind that the only current widely-accepted proof by
Haken and Appel is well over 100 pages and used hundreds of hours of computer
time.) In 1889 the Bishop of London, who later became the Archbishop of
Canterbury, published his “proof” of the Four-Color Theorem in the Journal of
Education.

In 1890 Heawood [11] pointed out a serious flaw in Kempe’s work. He also
showed how Kempe’s method could be used to prove that any map on the plane
can be five-colored. Kempe admitted that there was a flaw, and, furthermore, that
he was unable to repair it. As perhaps often happens to bearers of bad news,
Heawood received no public acclaim and certainly was not made a Fellow of the
Royal Society.

We now will consider Kempe’s method and its important successful variation
almost 100 years later by Haken and Appel. For convenience we represent, as did
many mathematicians who considered the problem, any map on the plane as
follows: Inside each region we place a tiny circle called a vertex. If two regions
share a common boundary line, we join their vertices with a curve through that
boundary. These curves are called edges and the resulting collection of vertices and
edges is a graph. Since no two edges of the graph intersect, we say that it is a plane
graph. Thus any map on the plane can be represented as a plane graph with the
vertices representing regions and the edges showing which regions are adjacent.
Figure 3 illustrates the derivation of the plane graph from the map in Figure 1. That
which remains after the removal of the boundaries of the original map is the plane
graph. Two vertices of a graph are called adjacent if there is an edge joining them.
Thus instead of coloring regions of a map we can color vertices of a plane graph.
The Four-Color Conjecture becomes:

In any plane graph each vertex can be assigned exactly one of four colors so that
adjacent vertices have different colors.

Observe that in Figure 3 certain nonadjacent vertices of the graph can be joined
by an edge without forming any intersecting edges. For example, the vertices
representing Arizona and Colorado could be so joined. Join as many vertices as
possible. The result, given in Figure 4, is an example of a maximal plane graph. Thus
any plane graph is contained in some maximal plane graph. Also if a maximal plane
graph can be four-colored, then any plane graph contained in it can be four-colored
as well. Thus in proving the Four-Color Conjecture it suffices to prove that any
maximal plane graph is four-colorable.

Before using the following result of Euler [7] we define the degree of any vertex w,
denoted deg w, as the number of vertices adjacent with w.

Theorem. Any maximal plane graph G with at least five vertices has a vertex v of
degree 3, 4, or 5.
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Figure 3.

Figure 4.

We give now an outline of Kempe’s work. Assume that the Four-Color Conjec-
ture is false and let G be a maximal plane graph with the fewest vertices which is
not four-colorable. Clearly G has at least five vertices. Let v be the vertex given in
Euler’s Theorem. Since G is a smallest non-four-colorable example, the removal of v
and all of its edges from G results in a four-colorable graph. Four color it and
consider the following three cases.

Case i. degv = 3. Now the vertices of G adjacent to v use only three of the four
colors used on G — v. Thus the fourth color is available for v, a contradiction.
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Case ii. degv = 4. If only three colors are used on the adjacencies of o, then as in
case i we use the fourth color on v. Assume that the neighbors of v are clockwise v,,
v,, U3, v, and are colored respectively 1, 2, 3, 4.

Figure 5.

3

Consider the points v, and v;. If, as in Figure 5, there does not exist a chain of
adjacent points colored 1 and 3 from v, to v,;, we interchange colors on all points
colored 1 or 3 which can be reached by such a chain from v,. In Figure 5, v; and x
would then be colored 3 while y and z would now be colored 1. The result is indeed
a coloring of G — v such that v, and v, are colored 3. Vertex v can now be colored
1. This four-coloring of G is a contradiction.

If 1-3 chain from v, to v; as in Figure 6 exists, then there cannot exist a 2-4 chain
from v, to v,. For if such a chain did exist, then we must have two intersecting
edges, which do not exist in a plane graph. Thus, similarly to the previous
paragraph, we interchange colors on all points colored 2 or 4 which can be reached
by a 2-4 chain from v,. Now color 2 can be used on v, a contradiction.

A Figure 6.
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Case iii. degv = 5. In this case let the vertices adjacent to v be clockwise v,, v,, v;,
vy, Us. Again we assume that four colors are used on the various v;, for otherwise
vertex v is easily colored with the fourth color. In fact by symmetry we can assume
that v, v,, v;, v,, s are colored respectively 1, 2, 1, 3, 4 as in Figure 7. If there
exists no 2-4 chain from v, to vs, then as before we can interchange colors on all
vertices which can be reached by a 2-4 chain from v,. Then v can be colored with 2,
a contradiction. Thus we assume that a 2-4 chain from v, to vs exists. Similarly we
may assume a 2-3 chain from v, to vs exists. It now follows from the fact that we
have a plane graph, that a 1-3 chain from v, to v, cannot exist nor can a 1-4 chain
from v, to vs.
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Figure 8.

At this point Kempe’s argument runs into difficulty. According to Kempe we
need only to interchange colors along the maximal 1-3 chain from v, and also
interchange colors along the maximal 1-4 chain from v;. Nowno v, i=1,2,3,4,5
is colored 1. Thus we use 1 on v, and according to Kempe the proof is complete.

However, Heawood showed by an example (see Figure 8) that it is possible that
after interchanging colors on the 1-3 chain, the 1-4 chain connects v; with v5. Thus
interchanging colors on the 1-4 chain leaves v; colored 1, v, colored 4, and no color
is available for v. A similar trouble occurs in Heawood’s example if the first
interchange occurs on the 1-4 chain. Thus Kempe’s “proof” is not complete.

I hasten to add that the example which Heawood gave can easily be four-
colored. It simply showed that Kempe’s technique did not necessarily work.
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Although Kempe’s work was not complete, it contained most of the essential
elements used almost a century later by Appel and Haken. We now introduce some
of the terminology used in their work.

Let G be a smallest maximal plane graph which cannot be four-colored. A graph
H is called reducible if H cannot be contained in G. As we discussed above Kempe
showed that H, and H, are reducible, where H, consists of a vertex of degree 3,
whose three neighbors are mutually adjacent and H, consists of vertices v, v;, v,,
v, and v, as given in Figure 5. To complete the proof all that remains is to show
that the graph in Figure 7, call it H,, is reducible.

A set S of graphs is unavoidable if each maximal plane graph with at least 5
vertices must contain at least one element of S. According to Euler’s theorem, we
have that (H,, H,, H;) is an unavoidable set.

A method of attack on the Four-Color Conjecture is to:

1. Find an unavoidable set S.
2. Show that each element of S is reducible.

A proof is complete when 1 and 2 are accomplished because: We assume that G is a
smallest non-four-colorable maximal plane graph. By 1 we know G must contain at
least one element of S. However, according to 2 all elements of S are reducible, i.e.,
G can contain no element of S. It follows that there is no smallest counterexample
and hence no counterexample.

In 1913 G. D. Birkhoff [5] showed that H, is reducible where H, is exactly H;
with the additional property that v,, v,, and v, have degree 5 and v,, vs each have
degree 6. Thus showing that S, = (H,, H,, H,) is an unavoidable set would com-
plete a proof. However, it is known that S, is not unavoidable.

During the twentieth century various mathematicians, some famous, others not,
worked on the conjecture. The story is often told of Minkowski’s attempt at a proof.
One variation of the story is that Minkowski boldly stated one day that the only
reason the four-color problem was unsolved was that only third-rate mathemati-
cians had worked on it. Minkowski, of course, knew that he was not a third-rate
mathematician! Thus he set to work. After a few weeks Minkowski quietly went
back to work on other problems apparently never to return to this one.

American mathematicians, in addition to G. D. Birkhoff, worked on the Four-
Color Conjecture. In the 1940’s a young American, A. Bernhart, wrote some papers
on the conjecture. Shortly after he married, the new Mrs. Bernhart met the now
middle-aged Mrs. Birkhoff at a mathematics meeting. Mrs. Birkhoff reportedly
asked, “Did your husband make you color maps on your honeymoon, too?” Thirty
years later the Bernhart’s son, Dr. Frank Bernhart, worked on the problem. Haken
and Appel continued this tradition of family involvement. Their teen-age children
helped check some of the details of their work.

In 1922, Philip Franklin [8] at MIT, showed that every plane graph with at most
25 vertices can be four-colored. Four years later C. N. Reynolds [16] had increased
that number to 27. By 1969, Ore and Stemple [15] increased it to 39. Shortly before
Appel and Haken completed their work, Walter Stromquist [18], a graduate student
at Harvard, showed that the Four-Color Conjecture holds for plane graphs with at
most 52 vertices and J. Mayer [13] in Montpellier, France, increased that to 96. The
essential idea in these works is that by limiting the number of vertices under
consideration, a rather small unavoidable set could be obtained. Then each element
in the unavoidable set was shown to be reducible.
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In considering this technique for the possible complete proof of the Four-Color
Conjecture, Appel and Haken knew from the work of H. Heesch of the University
of Hanover that the required unavoidable set might have as many as 10,000
elements. Furthermore, such an avoidable set would contain some rather large
configurations, each of which would have to be shown to be reducible. To show that
one of these configurations, call it K, is reducible, one must in essence show that
each of the numerous possible four-colorings of G-K can be extended to color K as
well or be changed by a Kempe interchange of colors so that the result can be
extended to K. Appel and Haken estimated that a single large configuration might
take as much as 100 hours of computer time and require more storage than was
available on any computer. However, by a method called a discharging procedure,
Appel and Haken were able to find an unavoidable set with about 1500 members.
Although many of the configurations in this set were not small, they were suffi-
ciently lacking in size so that each was shown to be reducible in less than 30
minutes of computing time.

Of course, their work did not progress as smoothly and directly as outlined in the
preceding paragraph. In fact by using a discharging procedure they obtained a set
of unavoidable configurations. Then they would use their program to attempt to
show all of the configurations were reducible. They would use the program until
they encountered a configuration K for which reducibility was not verified after 30
minutes of computer time. They then would modify their discharging procedure to
generate an unavoidable set which did not include K. By working back and forth in
this manner, their proof was finally completed.

We now briefly discuss a discharging procedure. The exact procedure used by
Appel and Haken is much too long and complicated to be given in detail here but
we attempt to explain the idea. As previously we let G be a smallest maximal plane
graph which cannot be four-colored. For each vertex v in G we assign it a number
called its charge, 6-degv. It follows from a theorem of Euler that the sum of all the
charges of G is 12. Then rather involved rules (called the discharging procedure) are
set up for moving positive charge from one vertex to another so that the decrease in
charge at the first vertex is the amount of increase of charge at the second. Thus the
new distribution still sums to twelve. The procedure eventually is used to show that
if no element of a certain set S of configurations is contained in G, then each vertex
eventually receives a nonpositive charge. This is impossible because the sum of
charges is, of course, twelve. It then follows that S is an unavoidable set.

After this work of Appel and Haken a number of obvious questions come to
mind. One such question is: What is the likelihood that a noncomputer-aided proof
will be found? Of course, that is very difficult, perhaps impossible, to answer
properly. However, Appel and Haken argue strongly that it is very unlikely that one
could use their proof technique without the very important aid of a computer to
show that a large number of large configurations are reducible. Of course, this does
not rule out the possibility of some bright young person devising a completely new
technique that would give a relatively short proof of the theorem.

Another question: What about the efficacy of other reported recent “proofs” of
the Four-Color Theorem? A retired American mathematician named Thomas
claims to have a noncomputer-aided proof or two of the theorem and an English-
man named Spencer-Brown received a fair bit of publicity in the U. K. two years
ago with his “proof.” As far as the author knows there exists no recognized expert in
the field of graph theory and coloring problems who accepts the work of either
Thomas or Spencer-Brown as a proof of the theorem.
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Finally, what mathematical significance can be attached to Appel and Haken’s
work? This is probably the first proof of a major theorem which not only makes
extensive use of the computer, but also would not be done without the computer.
Some mathematicians believe that there may be many relatively easy statements
which require tremendously long proofs. Currently the Four-Color Theorem seems
to be an example of that. Furthermore this work of Appel and Haken will certainly
herald a time when mathematicians attempt to make better use of the computer in
obtaining new results. Of course the philosophical question occurs of what really
constitutes a proof.

We close with a variety of references not previously mentioned for those who
may want to read further. Many graph theory books are available for readers who
may want to learn more of this recently popular branch of mathematics. Two of the
better texts are Harary [10] and Behzad and Chartrand [3]. For the reader who
wants detailed information on the Four-Color Problem, Ore [14] covers the topic
very well up to about 1966, Saaty and Kainen [17] include a discussion of the work
of Appel and Haken. Other discussions of Appel and Haken’s work which are more
technical than this article include Appel and Haken [2], Haken [9], and Bernhart [4].
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