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In the May 1916 issue of The American Mathematical Monthly, Roger A. Johnson
states and proves, without preamble, this appealing theorem [7]:

Theorem 1. If three circles of equal radius intersect in a point O, their remaining
intersection points lie on a circle of the same radius. Moreover, the orthocenter of
these three points is O.

Figure 1
Two possible arrangements of the circles in Theorem 1

For the reader who does not have his or her May 1916 issue of the Monthly
handy, here is an easy proof, which makes unabashed use of vectors.

Proof. Choose coordinates with the origin at O. Let w,, w,, w, be the coordi-
nates of the centers of the three circles. Then |w;| =r. Let A, B, C denote the
three remaining points of intersection of the circles. It is easily seen that (if the
centers are appropriately numbered) w, + w, = C, w; + wy; = B, w, + w; = A. These
points all lie on the circle of radius r centered at w, + w, + w;. To verify that O is
the orthocenter of A ABC, observe that (w, +w,) - (w, —w,) = 0, hence OC'L AB.
A similar argument obviously works for the remaining two sides. O

“Singularly enough, this remarkable theorem appears to be new,” commented
Johnson 75 years ago. “A rather cursory search in several of the treatises on
modern elementary geometry fails to disclose it, and the author has not found any
person to whom it was known. On the other hand, the figure is so simple
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(especially as it can be drawn and the theorem verified with a coin or other circular
object) that it seems almost out of the question that the fact can have escaped
detection.” Unfortunately, Johnson’s theorem seems to be no better known now
than it was then. I was unable to find it in any standard text on geometry (but see
Mathematical Reviews 81c¢:51010, where the result is attributed to G. Titeica, a
contemporary of Johnson), although the converse is readily found: if y is the
circumscribed circle about A ABC, then the three circles obtained by reflecting y
through the sides of A ABC intersect at the orthocenter. (See [9, p. 51] or [5, p.
391

On discovering a shiny nugget like Theorem 1, one wonders if there is a gold
mine nearby. In mathematical terms, one looks for generalizations. To this end, we
will retain the hypothesis that the radii of our three circles, which we will call y,,
7v,, and ¥y,, are equal (let us call this common radius r), and remove the hypothesis
that y,, v,, and vy, are concurrent. In general the three circles will intersect in six
points, as illustrated in Figure 2. It is natural to group the six points in two sets of
three, and try to relate the circumradii a and b of these two triangles. For
example, if the circumradius of the “inner” triangle in Figure 2(a) or (b) is known,
can we compute the circumradius of the “outer” triangle? According to Theorem
1, if the “inner” circumradius is 0, then the “outer” circumradius must be r. In
general, however, we need one additional datum: the radius of the circle on which
the centers of vy, v,, and vy, lie. (This information is already known in Theorem 1
because if v, v,, and v, all intersect in a point, the radius of the circle on which
their centers lie is also equal to r.) The following theorem, which is the main new
result of this article, answers our question in the affirmative.

(a) (b) ()

Figure 2
Three possible arrangements of the circles in Theorem 2

Theorem 2 (The Triquetra Theorem). Given three intersecting circles vy, v,, and
v of equal radius r, such that their centers lie on a circle of radius c. Choose any
three intersection points, not all on one of the circles vy;, and let their circumradius be
a. Let the circumradius of the remaining three intersection points be b. Then one of
the equations

+ab +ac +bc =r? (1)

must hold, where two of the =+ signs are positive and one is negative.

Why do I call Theorem 2 “the Triquetra Theorem”? In heraldry (a subject with
a fascinating language and set of rules, dating as far back as the Middle Ages),
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Figure 3
A heraldic triquetra

“triquetra” is a term that describes an emblem like the one illustrated in Figure 3.
According to the reference book [3], a triquetra consists of “Three equal interlaced
arcs. Normally used as a symbol of the Blessed Trinity.” I propose triguetra as a
mathematical term to describe a figure consisting of three mutually intersecting
circles of equal radius; as such, it generalizes the notion of a triangle, which is a
triquetra composed of circles of infinite radius.

The next theorem provides an explanation of the rule for determining the signs
in equation (1); it uses the idea of a signed circumradius of three points. Intuitively,
the circumradius of A P,P, P, (in that order) is given a positive sign if P, P,, and
P, lie in counterclockwise order on the circle that contains them. If they lie in
clockwise order, then the circumradius is given a negative sign.

We also refer below to the notion of outer and inner intersection points of a
triquetra. In the case where the centers of the three circles of the triquetra form an
acute triangle, as in Figure 2(a) and (b), it is intuitively obvious which are the outer
and inner intersection points. Nevertheless, we need a formal definition. Let C,,
C,, C, be the centers of vy, vy,, v3, and O be the circumcenter of A C,C,C;. Let
M, be the midpoint of C;C;. It is easy to see, since the radii of the circles vy, are
equal, that the intersection points of y, and y; lie on the line ‘OM,. The
intersection point that lies on the ray Wis called the inner intersection point,
and the one that lies on the opposite ray is the outer intersection point.

The notation for the following theorem is illustrated in Figure 4.

Theorem 3 (The Triquetra Theorem, Version 2). For i=1,2,3, let the circles vy;
have center C; and equal radius r. Assume that s C,C,C5 is acute, and has signed
circumradius ¢>0. Let y,Ny,={A3, B}, y,Ny3={A4,,B,}, and y,Nvy;=
{A,, B,}. The labels “A” and “B” are chosen so that at least two of the points A; are
outer intersection points. Let a be the signed circumradius of A A, A, A and let b
be the signed circumradius of A B,B,Bs. Finally, let § = sign(r? — c?). Then

(a—c)(b+d8c)=Ir*—c?. (2)

To see the connection between equation (2) and equation (1), it is only necessary
to observe that the c¢? terms on both sides of equation (2) always cancel. It is also
worth pointing out that in the case ¢ > r it is unnecessary to keep track of outer
and inner intersection points, since equation (2) is then symmetric with respect to
a and b.
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A,

Figure 4
This figure illustrates the labeling of points for Theorems 3 and 5. For those who wish to
verify Theorem 3, the coordinates of the points in the figure are as follows (all coordinates
are plus or minus 0.001):

C, =(2.688,4.414) A;=(-1760,-5330) 0O=(0,0)
C,=(-5.168, —0.013) A, =(8.354,1.622) B =1(0.392,0.267)
C, = (4.144, —3.086) Ay =(-3.411,6.055) A =1(1.378,0.937)

a=17.009 r=6.316 ¢ =5.168 b=1.994

Theorem 1 can be deduced from the Triquetra Theorem by substituting b =0
and r = c¢. In fact, one can even obtain Theorem 1 from the equation b = 0 alone,
by applying the following inequalities.

Theorem 4 (The Triquetra Theorem, Version 2, Continued!). Furthermore, if A;,
A,, A; are all outer intersection points, then

0<a,b<r<c<a+b if 6<0;
0<b,c<r<a<b+c if §>0. (3)

No reader who examines Figure 4 carefully could fail to notice the first part of
the next theorem. More will be said about the significance of the second part in the
final section.

Theorem 5. If C,, A;, and B, are defined as in Theorem 3 (& C,C,C5 need not be

acute), O is the circumcenter of & C,C,Cs, B is the circumcenter of » B,B,Bs,
and A is the circumcenter of A A; A, A, then O, A, and B are collinear.
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If aC,C,C, is acute and A; are the outer intersection points, then

ac be
ifc<r,thenOA2=?(b+c—a), OBZ=7(b+c—a);
(4)
ac be
ifc>r,thenOA2=—b—(a+b—c), OB2=7(a+b—c).

In the next section we will give the proofs of Theorems 2-5. The proof of
Theorem 2 is rather long and computational; perhaps some enterprising reader
will be able to find a more enlightening geometric proof. However, there are still
some interesting and unexpected tricks in this proof. The identity (13) is notewor-
thy, as it gives a remarkably succinct necessary condition for three vectors to be
vertices of a triquetra centered at the origin. (In fact, this condition is also
sufficient.)

In the final section we will investigate some interpretations of the Triquetra
Theorem, to satisfy those readers who (like the author) find more pleasure in a
picture than in a formula. The notion of a porism will come into play there.

Proof of the Triquetra Theorem

Throughout this section, {i, j, k} will denote any cyclic permutation of {1,2,3}.

Proof of Theorem 2. Define the points C;,, O, A, B;, M, and the signed
circumradii a, b, ¢ as in the introduction. The assumption that two of the points
A; are outer intersection points is not important for Theorem 2, but it does no
harm to assume this, since one of the two sets of three intersection points must
contain two outer intersection points. We begin by choosing coordinates with
origin at O. Let vy, v,, v; be the coordinates of the points A;, A,, A;. In the
triangle a C,C,Cj, let 6, = £C,. We will assume that the angles 6, are all acute.
At the end of the proof we will explain how to modify the argument in the case
where a C,C,C, is obtuse (the changes required are minor). We define “signed
distances” a,= +OA, by letting a, be positive if A4, lies on the ray OM,, and
negative if A4; lies on the opposite ray. We define signed distances b, = + OB, in
precisely the same way. Note that if » <c then g, and b, are all positive, since O
lies outside each circle y;, and therefore does not lie on the segment A, B,. If r > ¢
then the outer intersection point has a positive distance from O, and the inner
intersection point has a negative distance. .

Now since the triangle a C;C,Cj5 is acute, O is in its interior. By examining the
quadrilaterals OM;C, M,, it is easy to show that £ M;OM;=m — 6,. Moreover,
since a C,C,C; is inscribed in a circle centered at O,

6,=£C,C,C;=3,C,OC;= £ M,OC;= £ M,OC,.
Applying the law of cosines to a 4,0C;, we have
a’+c*—2ca;cos 0, =r>. (5)

(If a; is negative this remains true.) By computing the power of the point O with
respect to vy, v,, v3, we find that

ab;=c*—r?, (6)
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hence
ai+bi=2ccésOi. (7
From the formula for the circumradius of a triangle (see [1, Chap. 9]),

_ [y = vyl oy = vsl vy — v, 8
‘= 4Area (& A Ay A3) (8)

(Here “Area” is interpreted as a signed area.) When a;>0, £ 4,04;=0,+ 6, =
7 — 0, while a; <0 implies, by supplementary angles, that £ 4,04 ;= 0;. Thus in
either case, (A4,4,)* = a} +a} + 2a,a; cos §,, and equation (8) can be rewritten:

12 12 12
(a?+ a2 +2a,a,cos 0,)'*(a? + a2+ 2a,a;c0s 0,) (a%+a2+2a,a5c080,)"
2(a,a,sin 65 + a,a;sin 0, + aya,sin 0,) '

)

From the formula for the circumradius of A BB, B; which corresponds to (8) and
(9), replacing b; by (c? —r?)/a;, we find that

lvoy = v, lvy = o3l [y — vyl

- 2a,a,a5(a,sinf, +a,sin @, +a;sin ;) Ir®=e?l. (10)
For later reference, note that
0,+0,+0,=m, (11)
which implies that
sin26, +sin26, + sin26, = 4sin , sin 6, sin 4. (12)

We return to the three equations in (5). Multiplying the ith equation by
(a} — a}) and summing, we obtain

(a3 —a3)a,cos 0, + (a5 —aj)a,cos 6, + (af —a3)azcos 65 =0.

This has a very interesting interpretation if we identify the vectors v, v,, v; with
complex numbers. We find, after a little calculation, that

RC[EIEZE.%(UI_UZ)(UZ_US)(U3—UI)] =0. (13)

Hence,

|Im[D,5,55(v, — v,) (v, = v3) (05— 0,)] |

[U1[ [L’zl [U3|

loy = vyl oy —vsl fog — vy

=|(a%+a3)a,sing, + (a? +a?)a,sing,
+(a?+a3)assinb,], (14)
where the latter equation follows from a computation which essentially reverses
the procedure for deriving (13.) It will turn out that when a C,C,Cj; is acute the

expression inside the absolute values in (14) is always positive. However, since we
do not know that yet, we will denote its sign by &. By adding the equations (5) two
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at a time, we find that
al+aj=2r?—2c*+ 2ca; cos 6, + 2ca; cos 6;.
Plugging these into (14),
o, — v, lvy — sl lvy— v, =2€[(r? = c?)(a,sin 6, + a, sin 6, + a;sin 6;)

+c(aa,sin 05+ a,assin 6, +a,a,sin 01)].

(Note that we have used equation (11) at this step, so that, for example, sin 8, =
sin @, cos 6, + sin 6, cos 6,.) Let

X=a,a,sin0;+a,a;ysinb, +a,a;sinb,,

(15)
Y=a,sinf, +a,sinb, +a;sin 6.
Then, from (9), (10) and (15),
r2—c2)Y+cX r2—c))Y+cX
a =e(——)— and b=8e(—~———)———(r2—c2),
X a,a,a;Y
hence
r2—c2)? e(r?—c?)’
(a_gc)(,,_agg) et
a1a,0a; a,a,a;
or
(r?=c?)’
ab—¢echb —6e———a=0. (16)
a,a,a;

This nearly gives us a relation between a, b, ¢, and r, but not quite. We still need
to eliminate a,;a,a,, and it is not so obvious that this can be done!

The starting point is identity (7), which we have not yet used explicitly. This gives
us

b,sinf, + b, sin b, + b, sin O,
= —(a,sinf, +a,sin 6, +a;sin 6;) + c(sin26, +sin26, + sin26,).

But from (6) we also have

b,sin@, +b,sinb, + b;sin b,

P2 — 2
a,a,as;

(aja,sinf;+a,a;sin 6, +a,a;sinb,).

Thus

r2 =2
—( X+ Y=c(sin260, +sin26, +sin265). (17)
a,a,a;
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Continuing in the same vein, we have from (7):
b,b,sin@; +b,bysin@, +b,b;ysind, =a,a,sin0;+a,a;sin b, + a,a;sin 6,
—2c(a,sin6, +a,sind, + a,sin ;) + 4c?sin 6, sin 6, sin 05,

while from (6),

2 _ 2?2
r‘—c

b,b,sinf; +b,bysinf, +b,b;sinfh, = (—————l—(alsin 6, +a,sin, +a;sinb;).
a,a,a;

Thus

(=) o
—X+ |2c+ ————— [Y'=4c?sin 0, sin 4, sin 6. (18)
a,a,a,

At this point we could solve for X and Y, but it is more convenient to work
directly with equations (17) and (18). By equations (9), (10), (12) and (17), we
obtain

loy =0, [y — 03] fog — vyl
a—8b=——2 ZXYS S (2csin 6, sin @, sin 6;). (19)

Similarly, from (18) we obtain

2
(’2_02) a,a,0a3
20+ ——— |la — >

a,a,a; Fe—c

loy = val oy — 03l log — vy
- 2 2XY3 ! (2¢?sin 6, sin 6, sin 65). (20)

From equations (16), (19) and (20) we conclude that

@ a,45

b+ deac — b=0. 21
a gac —e 33 (21)
This allows us to solve for a,a,a5:

a,a,a;=¢e(r?>—c?)(b+dec)a/b. (22)

Substituting into (16) and simplifying, we obtain the equation

(b+dec)(a—ec)=8(r*—c?)=Ir*—c? (23)

or
dab + eac — debc = r?. (24)

Since 6 and & are both equal to +1, this equation has the desired form
+lab| + |lac| + |bc| = r?. We introduce absolute values here because the radii in
the statement of Theorem 2 are assumed nonnegative, while the radii we have
used in the proof are signed. Moreover, we note that the product of the three
summands in equation (24) is negative, hence either one or three of the + signs
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are negative. However, they could not all be negative, since their sum, r?, is
positive. Hence, exactly one of the + signs is negative, as claimed. This finishes the
proof in the case where a C,C,Cj; is acute.

If aC,C,C5 is obtuse, let us assume, without loss of generality, that £C, is
obtuse. Then every numbered formula in the above proof still holds, provided we
reverse the sign of a; and b,. That is, we define a, to be positive if A4, lies on the
ray opposite OM;, and similarly for B;. The details are left to the reader. O

Proof of Theorem 3. Most of the work for this theorem has already been done; we
need only show that the number ¢ in formula (23) is always + 1. This is clearly true
if all the signed distances a; are positive (because every term in the expression on
the right-hand side of equation (14) is positive). Thus if § = —1 (i.e. r <c¢), we are
already done (see the remarks in the first paragraph of the proof of Theorem 2).
Hence we may assume 8§ = 1. By hypothesis, at most one of the a,’s is negative;
without loss of generality, we may assume a; <0, a, and a, > 0. We claim that, in
this case, a and b cannot both be positive. Indeed, if a and b are both positive,
then, from equations (9) and (10) we have

a,a,sin 6, > la] > a, sin 6, + a, sin 04
1

2

a,sin 5 +a,sin 6, sin 6,

hence
ayassin® 0, > (a,sin 0 + a;sin 6,)(a,sin 6, + azsin 65) > a,a5(sin* 6, + sin”65).

But this implies sin? 8, > sin® §, + sin” §,, which is impossible in an acute triangle.
By contradiction, a or b must be negative.

To finish the argument, we turn to equation (22). Suppose &= —1. Since
a,a,a;<0 and r*>—c?>0, we conclude that (b —c)a/b>0. By equation (23),
sign(a + ¢) = sign(b — c¢). By the equations leading up to formula (16), sign(ab) =
sign(a,a,a; XY) = —sign(XY). Then by equation (19), sign(a — b) = —sign(ab). If
ab <0, then we have a — b > 0, hence a > 0> b. Thus a + ¢ > 0, contradicting the
assertion that sign(a + ¢) = sign(b — ¢). If ab >0, then b — ¢ > 0, thus b > 0, and
a > 0 as well. But this contradicts the assertion proven above, that a and b are not
both positive. O

Proof of Theorem 4. If all of the points A, are outer intersection points, ¢ and b
are automatically positive because the distances a; are.
If 6 =1, then ¢ <r by definition. By equation (19), a > b. If a <r, then by (2),

r’=ab+c(a—b)<r(b+a—-b)<r?

a contradiction. Hence a >r. Again by (2), (b +c)a —c)=(r+c)(r — c); since
a—c>r—c, it follows that b <r.

The fact that a <b + ¢ is an easy corollary of Theorem 5. (To avoid circular
reasoning, note that this inequality is not used in the proof of that theorem.)

The arguments in the case 6 = —1 are very similar, and are left to the reader. In
particular, the inequality ¢ <a + b also follows from Theorem 5. O

Exercises. Several more inequalities concerning a, b and ¢ can be derived under

the hypotheses of Theorem 4 (a C,C,C; is acute, A, are the outer intersection
points). All of these are more or less straightforward applications of formulas (2)
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and (3) (one does not need any more to go into the details of how these were
derived). We leave these as exercises for the interested reader:

If 56> 0: (a) a’—ac+c*<r?,
(b) a’>—ab +b%<r?,
(© b2+ bc+c?=r2
If 6 <0: (a) a’—ac+c?<r?
(b) b>—bc+c?<r?
(c) a’>+ab+b*>r2

If 5 > 0, it is an easy exercise, using equation (2) and inequality (¢) above, to show
that @ <2r/y3. Thus three discs of radius r can cover a disc of radius at most
2r/y3. (This is not a new result; see [8] for a more general theorem.)

Remark. It is also possible to establish a converse to inequality (a) above: Given
a,c,r such that a®> — ac + c> < r?, then there exists a triquetra of circles of radius r,
whose centers lie on a circle of radius ¢ and whose outer intersection points lie on a
circle of radius a. In fact, the triquetra may be chosen to be “isosceles.” The proof is
not very interesting, so we only sketch it here. First, it is easy to see that the
hypothesis implies a <r <c or ¢ > r > a (the case ¢ =r =a is obvious by Theorem
1). In the terminology of the proof of Theorem 2, set a; =a, =x and a;=y. The
angles #, may be found from equation (7). The condition (9) gives one equation
relating x and y, and another can be obtained from (22) by substituting in the
value of b found from equation (2). These equations are fairly easy to solve for x?2
and y. For instance, in the case ¢ <r <a, we get

72— 2
x?= [ai\/ac(rz—a2+ac—c2)/(r2—ac)],
a-c

y=a¥Fac(r*—a*+ac—c?)/(r*—ac) .

Using the inequalities

r2—ac>r*—a’>+ac—-c?=0,

it is easily seen that the expression under the radical is nonnegative and less than
a?, so positive solutions for x and y exist. From x, y and 6, the triquetra can be
reconstructed.

Proof of Theorem 5. If r>c, then equations (6) imply that B, B,, and B, are
obtained by inverting A,, A,, and A, with respect to the circle of radius
(r? = ¢?)/? centered at O, then performing a half-turn around O. If r <c¢, then
B,, B, and Bj; arc obtained instead by inverting A,, 4, and A, in a circle of
radius (c? — r?)!/? centered at O. No half-turn is required. In either case, 4 and
B are collinear with O.

To find the distance OA, we apply the same inversion. We have seen that
OB, B, B, is the inverse, with respect to a circle of radius |r? — c2|'/?, of a circle of
radius a whose center is a distance OA from the center of inversion. By inversive
geometry, the radius b of this circle must be equal to

b=i|c2—r2|a/|a2—(0A)2i. (25)
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The hypothesis that A4, are outer intersection points ensures that ¢ and b are
nonnegative (Theorem 4). If a C,C,C; is acute, we may use formula (2) for
lc? — r2|. Finally, one can also use the hypothesis that a C,C,C; is acute to show
that a > OA, as follows. Because A; are the outer intersection points, £ A;0A =
£ M;OM; is obtuse for each i, j (see the beginning of the proof of Theorem 2), and
hence O lies in the interior of A A, A, A;. It follows that O lies in the interior of
(©A,A,As;, and hence the distance OA is less than the radius of ©.A4,A4, A5, which
is a. With these facts in hand, it is easy to solve for OA in equation (25) and arrive
at equation (4). To obtain the formula for OB, note that ©B,B,B; can be
obtained from ©A,A4,A4; by a dilation with center O and magnification factor
b/a, followed by a half-turn about 0. O

Geometric Consequences of the Triquetra Theorem

In this section we will continue to let a denote the circumradius of the outer
intersection points of a triquetra and b denote the circumradius of the inner
intersection points. We will call the four parameters a, b, ¢ and r which describe
the geometry of a triquetra its fundamental radii. In Theorems 2 and 3 we
discovered that there is an algebraic relationship among a, b, ¢, and r. Why is this
surprising? We may think of a triquetra as being determined by a triangle
(aC,C,C;) and a radius (r). Up to isometry, a triangle is determined by three
parameters (for example, its side lengths); hence the space of all triquetras is
4-dimensional, and we would expect four arbitrarily chosen parameters to be
algebraically independent. The fact that a, b, ¢ and r are dependent means that
something geometrically nontrivial is going on. In fact, by Sard’s theorem, for
almost all “qualifying” values of a, b, ¢ and r (e.g. those satisfying equation (2)
and a” — ac + c? < r?, by the remark before the proof of Theorem 5) there must be
a l-parameter family of triquetras (or, to put it another way, infinitely many
triquetras) with those fundamental radii. The goal of this section is to understand
this 1-parameter family.

A porism is usually defined to be a problem with either no solutions or infinitely
many solutions (see, for example, [6, footnote on p. 113]). Thus the Triquetra
Theorem may be rephrased as a porism: given a, b, c, r, find a triquetra with this
set of fundamental radii. From Section 2, we know the problem has no solutions if
(a—c)Xb=+c)# |r2—c? orif a®> — ac + c? > r?; otherwise, we know it does have a
solution and, by the heuristic argument above, it should have infinitely many.

One of the best-known and prettiest porisms in Euclidean geometry is Poncelet’s
theorem, illustrated in Figure 5. This states (see [1, Sec. 16.6]):

If two conics are positioned so that there is an n-sided polygon inscribed in one and
circumscribed about the other, then there exist infinitely many such polygons. In fact,
we can be even more precise: if such a polygon exists and we are given one line
segment with endpoints on the first conic and tangent to the second, then we can
complete an “inscribed-circumscribed” n-gon containing that segment. In many
cases—for example, when the conics are ellipses, with the second in the interior of
the first (as in Figure 5)—it follows that any point on the first conic can be used as
the “starting point” for drawing such an n-gon.

The general case of Poncelet’s theorem is a deep result in projective geometry.
However, the case n =3, which is the one relevant to our discussion, is more
elementary. If the two conics are circles, it is a converse of Euler’s formula relating
the circumradius R and inradius » of a triangle A ABC to the distance d between

128 THE COLLEGE MATHEMATICS JOURNAL



Figure 5
Poncelet’s Theorem

the incenter and circumcenter:
R*-2/R=d>.

(See [1, exercise 10.13.3], and its solution in [2, p. 191]) The case n =23 for
arbitrary conics follows from Desargues’ involution theorem ([4, exercise 9.4.3]).
Ultimately, we will trace the surprising existence of a 1-parameter family of
triquetras with given fundamental radii back to the case n =3 of Poncelet’s
theorem. We will also discover some attractive new ‘“Poncelet-like” porisms.

By Theorem 5, the infinitely many triquetras that have the same fundamental
radii a, b, ¢, r have yet two more parameters in common, namely the distances
0OA and OB. Moreover, since the points O, A, B are collinear (Theorem 5), the
distance AB is also the same for each of these triquetras. Since the radii and
distance between the centers of ©A4,;A4, A, and OB, B, B; are the same for each
triquetra, we may consider these circles themselves as being fixed, and hence:

Theorem 6. Given two circles, one in the interior of the other. If there exists a
triquetra of circles of radius r, with outer intersection points on the outer circle and
inner intersection points on the inner circle, there exist infinitely many such triquetras.

(See Figure 6. One may imagine these as frames from a movie.) In fact, reasoning
by analogy with Poncelet’s theorem, we may suspect a stronger statement is true:
Every point on the outer circle and every point on the inner circle is an intersection
point of some such triquetra.

Theorem 6 has the slight drawback that it is comprehensible only to someone
who knows what a triquetra is. Our last porism has no such drawback.

5P

A family of triquetras
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Theorem 7. Given two circles v and v', and a number r, such that for every point
A in either of the circles, there exist two points in the other circle at distance r from A.
Suppose there exists an equilateral hexagon with sides of length r, whose vertices lie
alternately on vy and vy'. Then there are infinitely many such hexagons; in fact, every
point of y and ' lies on some hexagon of this type.

(See Figure 7.) The heuristic argument for Theorem 7 is to take the circles
OC,C,C; and ©A4,A4,A; as being fixed. Then the hexagon A4,C;A4,C,A4,C,
alternates between these two circles and has side lengths r, as described. Our
infinite family of triquetras will then provide us with an infinite family of hexagons
with this property.

@@@

A family of equilateral hexagons
Note that Theorem 7 may hold even if neither circle is inside the other.

The heuristic arguments I have given for Theorems 6 and 7 fall a little short of
being actual proofs. To begin with, our argument by counting parameters does not
actually guarantee that for every value of a, b, ¢, r there are infinitely many
triquetras; Sard’s theorem allows for a measure-zero set of exceptions. Secondly,
even when we do have a 1-parameter family of triquetras with given values of a, b,
¢, OA, OB, and r, it is still a big step to get to the stronger claims in Theorem 6
and 7, that any point on the outer circle is a vertex of such a triquetra.

Instead of trying to make our heuristic arguments more rigorous, we can more
easily use Poncelet’s theorem itself to prove our “Poncelet-like” conjectures.
Indeed, to obtain Theorem 7 it is sufficient to prove the following lemma:

Lemma 8. Given two circles, y and v', and a fixed number r, satisfying the first
hypothesis of Theorem 7. Consider the set of all triangles n ABA' such that A, A’ lie
on vy, Blies on y', and AB = BA' = r. Then the set of all the lines AA"is the dual to a
conic T.

To deduce Theorem 7 from this, begin with any point A4 €. By hypothesis,
there exists a point B €y’ at distance r from A, and a second point A€y at
distance r from B. By Lemma 8, 44" is tangent to I'. By Poncelet’s theorem, A4 is
one side of a triangle inscribed in y and circumscribed about I'. By Lemma 8, this
triangle gives rise to the desired equilateral hexagon.

Proof of Lemma 8. Let a be the radius of y and b the radius of y'. Choose
coordinates so that v’ is centered at the origin, and 7y is centered at the point
C=1(c,0),(c=0). If By, the line I(B) = AA" has the following equation:

2X-(C—B)=r*+c*—a*-b%
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For each By, let

r?4+c?—a?-b?
f(B)= 2B-C=b7) B, (26)

and let T denote the curve f(y'). Note that f(B)€I(B). A routine computation
shows that the tangent to I' at f(B) is perpendicular to C — B, which is also the
normal to the line /(B). Hence in fact the tangent line to I' at f(B) is I(B). If we
let B=(bcosh, bsinh), then the equation for I' in polar coordinates follows
immediately from (26):

a’+b*—r?—c?
f(6)= 2(b—ccosf) ’

and hence T is a conic, one of whose foci is the center of y'. O
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