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The undergraduate curriculum is dominated by direct problems, that is, problems
in which just enough information is provided for the student to carry out a
well-defined stable process leading to a unique solution. Such problems may be
represented schematically as in Figure 1, where K is an operator modeling some
process, u is some input in the domain of K, and v is the required output. Because
K is a function, a unique output v exists for each input u in the domain of K and
if K is in some sense continuous, as is very often the case, the output v depends
continuously on u. Putting it another way, the output v is stable with respect to
appropriate small changes in the input u.

Two inverse problems are associated with every such direct problem. One, the
causation problem, involves determining the cause u given the effect v and the
model K. When K is a finite dimensional linear operator, the causation problem is
at the heart of linear algebra: it is the problem of solving the linear system

Ku=v

for u. The other inverse problem, the model identification problem, consists of
determining the operator K (from a given class of models) given cause-effect pairs
(u,v). (See [1, 2, 6] for an introduction to some physical and mathematical aspects
of inverse problems.)

Three issues relating to these inverse problems come to mind. The first is
existence. Given a model K, is there a cause u (in some class) that can account for
an observed effect v? For the model identification problem the corresponding
question is: given an observed collection of cause-effect relationships (u,v), is
there a model (in some class) that can explain it? Uniqueness is also an issue that
presents itself. Might two distinct causes account for the same effect? Can distinct
models determine the same cause-effect observations? Finally, since in most
practical inverse problems the data of the problem are measured quantities, or are
represented in a computer in a truncated form, the stability of solutions is an issue
of some relevance. Specifically, is the solution continuous with respect to the data?

Early in this century Jacques Hadamard adopted the attributes of existence,
uniqueness, and stability as the hallmarks of a well-set mathematical problem. He
defined a problem to be well posed (actually, he used the term correctly set) if it
has a unique solution that is continuous with respect to the data and he expressed
the view that any mathematical problem representing physical reality must be well
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posed. A problem that is not well posed is called ill posed. Today Hadamard’s
belief that physical problems must be well posed has been shown to be mistaken. A
myriad of important problems in remote sensing, medical imaging, nondestructive
testing, environmental monitoring, system identification, and other fields are
inverse problems of the types discussed above and are ill posed. Modern science
and technology will confront our students with such inverse problems when they
leave the university, yet the existence-uniqueness-stability trinity holds sway in the
current curriculum and scant attention is given to inverse problems. The aim of
this note is to call attention to three elementary inverse problems, all stemming
from Torricelli’s law, that are interesting in themselves and can be used to
introduce undergraduates to notions related to ill-posed problems.

The first problem is algebraic in nature and illustrates how a physical problem
can have a non-unique solution. In this problem instability is not at issue, but in
the second problem, which is a model identification problem, instability arises as a
consequence of the inherent instability of the differentiation process (see [5] for
more on this). The third problem is a causation problem involving a simple integral
equation, something not often encountered by undergraduates. This problem
illustrates that solving such integral equations can be an unstable process. Before
taking up the problems, we have a few words on Torricelli.

Torricelli and His Law

Evangelista Torricelli (1608—-1647) was an important figure in science whose
contributions do not usually receive the degree of recognition they deserve. He
served as secretary to the blind Galileo in Florence during his last year and
succeeded him as the Tuscan court mathematician and professor at the University
of Florence. Torricelli’s invention of the mercury barometer (1643), which estab-
lished the weight of the atmosphere and the reality of the vacuum, was widely
publicized to the scientific community by Pére Mersenne. On getting the news
from Mersenne many leading European natural philosophers of the day replicated
and refined Torricelli’s experiments. The ensuing debate on the vacuum was, after
Galileo’s planetary observations, the second great front of the scientific revolution.
As observed by Redondi [7], “Now the scientific revolution was taking place on
earth.”

Torricelli’s law gives the horizontal velocity of the effluent through a hole in a
water tank as a function of the depth of the water above the hole, that is, the
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hydraulic head. Its utility as a physical demonstration in the calculus classroom was
noted recently by Farmer and Gass [4].

Referring to Figure 2, Torricelli’s law states that the velocity v of the effluent
satisfies

v=1y2g(D—-h)

where g is the gravitational acceleration constant.

The law follows from the principle of conservation of energy. As water drains
through the hole, the potential energy of an infinitesimal disk of mass m at the
surface, mg(D — h), is converted into kinetic energy, %mvz, of an equal volume of
effluent, that is,

smv?=mg(D —h)

giving Torricelli’s law.

An Algebraic Inverse Problem: Height of a Spurt

A common direct problem posed in calculus texts is that of finding the range R of
the initial spurt in Figure 2, given the depth of water D and the height A of the
opening (air resistance is neglected). Of course this problem has a unique solution
R for each h €0, D]. The corresponding inverse problem of determining 4 from
R is a useful device for illustrating the notions of existence and uniqueness of
solutions. Specifically, given the depth D and the range R, what is the height 4 of
the hole?

On being presented with the problem, most students guess, correctly, that a
solution exists if the specified value of R is not “too large” (in relation to D).
More often than not, they also guess, incorrectly, that the solution is unique.
Frequently, even though they find two solutions, they tend to eliminate one as
“extraneous.”

The analysis is quite simple and illuminating. Choosing a coordinate system as
indicated in Figure 2, the velocity of the leading drop at time ¢ is, according to the

Figure 2
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laws of Torricelli and Newton,

v(t) =y2g(D—h)i—gtj.

Using the appropriate initial conditions, the position vector is found to be

r(t) =2g(D —h) ti+ (h —gt*/2)j.

The time of descent is therefore given by
h—gt?/2=00rt=2h/g.
Substituting this into the first component, we find that
R=2yh(D—h) .

The right hand side of this expression ranges in value from 0 to D and therefore a
solution of the problem exists if and only if 0 < R < D. However, the solution

h=(D+VD*-R?)/2

is unique if and only if R = D. Students realize that the additional root of the
equation is in no way “extraneous” when they appreciate the physical basis for the
lack of uniqueness: the smaller root is associated with a larger hydraulic head
giving a larger velocity to the effluent, while the smaller velocity at the larger root
is compensated with a longer time of descent.

A Coefficient Determination Problem: Cross Section of an Irregular Vessel

Visitors to the Mayan ruins at Chichén Itzd in Yucatan are guided to a deep
sacrificial well of very irregular cross-section, the sacred cenote, which the Mayans
believed to be a kind of gate to paradise through which victims were conducted.
The cross sections of the cenote are quite inaccessible. The Mayan sacrificial well
inspired the problem we take up in this section, namely an indirect approach to
determine the cross-sectional areas of an irregular vessel from observations of its
drain rate.

How does the shape of a vessel affect its drain rate? Consider an irregular water
vessel as illustrated in Figure 3. Suppose the cross-sectional area of the vessel at
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height y along a vertical axis is A(y) (assumed to be a continuous function of y)
and that the water in the vessel is draining through a horizontal spigot of
cross-sectional area a in its base.

A standard direct problem in an elementary differential equations course is to
determine the water level y(¢), given the cross-sectional profile A(y). The differ-
ential equation governing this relationship is derived by equating the volume lost in
time At due to the drop in the water level Ay with the volume of water drained
through the base. According to Torricelli’s law,

—A(y) Ay =ay2gy At

and in the limit one obtains the differential equation

d
Ay G = ~a7e . (1)

The corresponding model identification problem is the inverse problem of
determining the profile A(y) from observations of y. Since the unknown A is a
function of the solution y of the differential equation (1), in this problem we are
said to be “identifying a distributed coefficient in a differential equation.” For any
realistic vessel dy/dt is never zero and therefore the inverse problem has the
unique solution

A(y) = —\/Ey‘/% 2)

So existence and uniqueness of the solution of the inverse problem is not an issue.
But what about stability? Do small errors in observations of y result in small
changes in the calculated profile A(y)? Not necessarily. In fact, the differentiation
process is notoriously unstable (e.g., [5]), a fact that we do not always point out to
our students.

A concrete example of the instability of A(y) with respect to small changes in y
is easy to construct. For example, suppose the vessel is a cylinder of height 1 and
constant cross-sectional area A(y) = C. It is then easy to solve (1) for the water
level:

y(t)=(—-bt)’, 0<t<1/b
where b =ay/2g /2C. Let € be an arbitrarily small positive number and for a given

(large) positive number M, let n(¢) be the continuous piecewise linear function
that satisfies

0 01 €
S ATV

€, te

n(t) =

Then n has slope M on

1 € 1 €
(E oM T ZM)
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and satisfies 0 < n(¢) < e. Consider the perturbed observation

ye(t) =y(t) +n(t)

of the water level. According to equation (1), the corresponding cross section then
satisfies

1,2
)

A(y$)(—2b(1—bt) +1'(1)) = —ay/2g ((1 —bt)* + (1)
on
1 € 1 €

26 2M’2b T 2m

and in particular at the level corresponding to ¢ = 1/2b we find, using (2), that the
cross-sectional area computed from the observation y¢ satisfies

_ —am(% + 6/2)1/2
-b+M '

A(y°)

By choosing M large enough, we can guarantee an arbitrarily small computed
cross-sectional area A(y€) using data containing an arbitrarily small error, while
the true cross-sectional area is the constant C. This type of instability with respect
to small data errors is a signature of inverse problems involving identification of
distributed coeflicients in differential equations.

Geometry Via Flow Rates: An Integral Equation

Integral equations are seldom treated in the undergraduate curriculum. To some
extent this accounts for the neglect of inverse problems in undergraduate courses
because many inverse problems, particularly causation problems, can be phrased as
integral equations. In this section we present an inverse problem arising from
Torricelli’s law that is expressed as a particularly simple integral equation which
can be solved by Laplace transforms. A special case of the equation was treated
long ago in [3] by converting it to an Abel integral equation. Our only goal is to
develop the model and show that the solution of the inverse problem is unstable.

Consider an irrigation canal of depth 4. In the wall of the canal is a weir notch
fitted with a sluice gate that is symmetric with respect to a central vertical axis
through the gate, as in Figure 4. The shape of the notch is given by a function
x =f(y) as indicated in the figure and it is clear that this shape will determine the
total rate of flow through the notch.

The relationship between the notch shape and the flow rate is easily obtained
from Torricelli’s law. If we consider a horizontal slab of water of thickness Ay at
height y, then the volume of this slab passing through the notch per unit time is

2f(y) Ayy2g(h—y) .

Summing over all slabs and taking a limit, we find that the total volume of flow per
unit time through the notch, V(4), when the water level is 4, is given by

V(h) =2f0hv2g(h—y)f(y)dy. 3)
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The direct problem of determining V/, given f, has a unique stable solution V. The
inverse problem, which is of the type we called a causation problem in the
introduction, is to determine the geometry f from knowledge of the flow rate V.
This problem involves the solution of an integral equation for f. The integral
equation is a particularly simple convolution equation and its solution for various
simple functions V(h) is a nice elementary exercise on the use of Laplace
transforms. For example, if the volume rate of flow is given by V(h) = 2@ h?,
then substituting into (3) results in the integral equation

B = fo”\/mf(y)dy (4)

to be solved for notch profile f(y). Applying Laplace transforms to (4) and
invoking the convolution theorem results in

2573 =H(s) - F(s) (5)

where H(s) =_Z{h'/*} = (Y= /2)s~3/? and F(s) is the Laplace transform of f(y).
We then find from (5) that

4
F(s)=——=s"3"?
)=
and hence the desired notch profile is given by
F(9) = =t s
Vi

8
= —-V;]_.
™

Our interest in this section is not solution methods, but simply to point out that,
unlike the direct problem, the process of solving the inverse problem is unstable.
One way to see this is to note that for a given H > 0, the function

V(h)=emy2gh,0<h<H

has an arbitrarily small amplitude, for suitably small € > 0. But the corresponding
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solution to the inverse problem
f(y)=e/Vy

is unbounded. (This solution can be verified by substitution into (3) and using
2

@ u i
f —————du = —, a good exercise for students.)
O (u?+1) 4

Conclusion

Ill-posed inverse problems are becoming increasingly important in modern science
and technology. Such problems and the issues of existence, uniqueness, and
stability that they suggest deserve more than lip service in the undergraduate
mathematics curriculum, but simple models of ill-posed inverse problems are hard
to come by. We hope that we have succeeded in this note in promoting Torricelli’s
law as a useful and simple physical basis for a number of “undergraduate-friendly”
inverse problems.
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Poetry and Hidden Meanings in Mathematics

Gel'fand amazed me by talking of mathematics as though it were poetry.
He once said about a long paper bristling with formulas that it contained
the vague beginnings of an idea which he could only hint at and which he
had never managed to bring out more clearly. I had always thought of
mathematics as being much more straightfoward: a formula is a formula,
and an algebra is an algebra, but Gel’fand found hedgehogs lurking in the
rows of his spectral sequences!

Dusa McDuff’s response to her award of the 1991 Ruth Lyttle Satter Prize in
Mathematical Notices, vol. 38, No. 3, March 1991, pp. 185-7.
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