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Almost every reader will have seen beautiful pictures of the Mandelbrot set,
pictures that become more and more intricate as we zoom in at finer and finer
scales. They make terrific tee shirts and lovely posters, and they have captured the
imagination of mathematicians and non-mathematicians alike. While we admire
the beauty of such pictures, we ought to be equally impressed by the mathematical
feat of producing them. If the entire Mandelbrot set were placed on an ordinary
sheet of paper, the tiny sections of boundary we examine would not fill the width
of a hydrogen atom. Physicists think about such tiny objects; only mathematicians
have microscopes fine enough to actually observe them.

But are these really pictures of the Mandelbrot set? When we use the computer
to study a small intricate pattern along the boundary, are we viewing the Mandel-
brot set with a powerful microscope, or are we seeing merely a distorted shadow of
something real? Can we be sure that those pictures are accurate? In fact, how
much do we know about the Mandelbrot set?

Drawing Pictures

The Mandelbrot set is a complicated object with a simple definition. The definition
is easy to give using complex numbers, ¢ =a + bi, and we use nothing more
sophisticated than the fact that complex numbers can be identified with points in
the plane.

For each complex number ¢ we can define the “c-process.” Start with 0, square
and add c, square that and add c, and keep on repeating:

0scoc?tco(c2+c) +c—o

It is instructive to try this out for a few values of ¢, and readers with access to a
computer algebra program or a calculator that works with complex numbers can
experiment. For example, when ¢ = 0.1 + 0.2/ the process soon reaches 0.070 +
0.223; and gets stuck; that is, there is a fixed point. When ¢ = —0.9 + 0.1 the
process settles down quickly to oscillate between just two numbers, —0.907 + 0.122:
and —0.904 —0.123i. When ¢ = —0.5 + 0.6; the process wanders hopelessly, re-

*A written version of the Mary P. Dolciani Lecture delivered at Hunter College in April 1993.
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turning close to various numbers, but at irregular intervals. And when ¢ = —0.4 +
0.8i the process seems to wander for a few repetitions and then gets large quickly;
after 14 repetitions both real and imaginary parts of the number exceed 1013,

Precisely what happens for each value of ¢ is complicated and a bit mysterious.
One aspect of the behavior is simple, however: For each c, either the c-process
stays bounded or it does not.

Definition. The Mandelbrot set M is the set of all ¢ for which the c-process stays
bounded.

How do we draw pictures? That’s simple too. Each complex number ¢ =a + bi
can be identified with a point (4, b) in the plane. Subdivide a section of the plane
into tiny squares (pixels) and use the center of each pixel as your c; color that pixel
black if it is in the Mandelbrot set—otherwise, leave it white. Figure 1 shows the
first crude picture of M drawn in this way.

Figure 1

Of course, the astute reader may have noticed a loose end in this discussion.
How do we know when the process stays bounded? The answer is: For many
points, we don’t, not for sure. On the other hand, often we can be sure that the
process is unbounded. The idea is clear: The square of a large complex number is
much larger still, even when we add c. So when the process reaches a large
number, the next number is even larger, and so on. Here is the precise result.

Lemma. If the c-process ever reaches a number beyond radius 2, then it is
unbounded.

The proof uses only elementary ideas—essentially the triangle inequality—but we
omit the details of the proof.

This small lemma not only tells us how to recognize values of ¢ that are not in
the Mandelbrot set; it also gives us a way to draw more informative (and more
attractive) pictures. Again, we subdivide a section of the plane into pixels and
perform the c-process using the center of each. This time, however, when the
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process goes beyond radius 2, we stop (since we know it is unbounded) and color
the pixel a color that reflects how many repetitions it required to get there. Those
are all points outside the Mandelbrot set, but the colors reflect (in some sense)
how far outside they are.

Figure 2 shows the Mandelbrot set drawn according to this scheme, but we have
replaced the colors with different shades of grey. The image in Figure 3 is a tiny
portion of the boundary of the image in Figure 2. By using the computer to zoom
in on that image, we are able to draw a portion of the boundary inside a box that is
about 1071° cm on a side—no larger than the size of a hydrogen atom—and we
can draw it in exquisite detail. The computer is in this case a powerful microscope
indeed.

Figure 2 Figure 3
The Mandelbrot set, outside shadings. Part of the boundary, size of hydrogen atom.

Our new scheme still does not tell us when a point is in the Mandelbrot set. If
we perform the c-process for a thousand repetitions, we may begin to suspect that
the process is bounded—but we are not certain. After another thousand repeti-
tions, we might give up trying. In order to draw pictures, therefore, we simply

Facts about the Mandelbrot Set

¢ We know from the lemma that the entire set M is contained in the disk of radius
2.

» We know from the definition that M is closed (since its complement is open—if
the c-process is unbounded, then it is unbounded for nearby values of c).

 Therefore, we know that M is compact (Heine-Borel).

e The main part, which looks like a cardioid, is in fact a cardioid, and consists of
those values of ¢ for which the c-process approaches a single value (a fixed
point). It is not hard to write down the explicit formula.

e To the left of that cardioid, there is a disk, which consists of those values for
which the c-process oscillates closer and closer to a pair of points (a 2-cycle).
Again, we can find a formula.

We can describe other specific features, but with more and more difficulty as we
view finer and finer detail on the boundary. See [2].
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agree to establish a threshold T (the give-up threshold or GUT) and declare values
of ¢ to be in the Mandelbrot set when the c-process has not gone beyond radius 2
after T repetitions. Of course, the picture we draw may depend on our GUTs.

As indicated in the “Facts” box, we can prove that some points are in the
Mandelbrot set. These are interior points. Whether all interior points can be
described in a similar way—as values of ¢ for which the c-process approaches a
cyclic orbit of points—is not known.

What’s the Problem?

Why should we worry about the accuracy of these pictures? Two reasons: Comput-
ers make mistakes, and so do people.

Computers must approximate numbers in almost every computation, and even
when a computer exactly represents a number, it may not exactly represent its
square. In fact, the only numbers most modern computers can handle with
complete precision are numbers with finite binary expansion. The mistakes (round-
off errors) are quite small, of course, but for some values the c-process is sensitive
to even incredibly tiny errors. After many repetitions, we may be far away from the
true value.

The mistakes people make are those GUTs we referred to before. For any ¢ we
perform the c-process until either we get beyond radius 2 (and then we know the ¢
is not in the Mandelbrot set) or we give up (and then we declare it in the
Mandelbrot set due to exhaustion). We may be giving up too early, and changing
the give-up threshold changes the picture we draw.

Here’s a good analogy. Suppose we try to draw a graph of a reasonably
complicated function, say y = sin(50x) on the interval [—1,1]. Secretly, we know
that the graph oscillates up and down about 16 times between —1 and 1, and looks
like the familiar sine curve. But we “draw” the graph in the same way that we
“draw” the Mandelbrot set. We subdivide the square into pixels, and test the
center of each to see whether it is on the graph; that is, for the point (x, y) we
check to see whether y = sin(50x). The graph appears in Figure 4.

Of course, we should not be surprised that the graph is virtually invisible: Few
centers of the pixels will be precisely on the graph. We need to test whether they
are nearby, not exactly on, the graph. We therefore introduce a tolerance (analo-
gous to the give-up threshold). When y is within the tolerance of sin(50x), we
color the pixel black. Figures 5, 6, and 7 show pictures of the graph with tolerances

Figure 4 Figure 5
The graph of y = sin(50x). Tolerance = 0.01.
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of 0.01, 0.1, and 1. Notice that the picture with what appears to be a foolish
tolerance of 1 gives the most accurate (although crude) picture of the graph. By
carefully adjusting the tolerance (and the number of pixels) we can produce a good
picture of the graph. But in this case, we know what the real picture should look
like.

Figure 6 Figure 7
Tolerance = 0.1. Tolerance = 1.

What about the Mandelbrot set? Figures 8 and 9 show the same small piece of
the boundary, one with give-up threshold of 250 and the other with threshold 400.
The difference is striking. At first, we might be tempted to say that the larger
threshold provides the more accurate picture; after all, we should be less likely to
make a mistake when we work harder. But in the sin(50x) example above, the
crudest tolerance gave the most accurate picture. Could the same be true for the
Mandelbrot set—could a smaller threshold give a better likeness?

Figure 8 Figure 9
Threshold = 250. Threshold = 400.

Do Pictures Mislead?

The Mandelbrot set is a complicated object, and like all pictures of complicated
mathematical objects (for example, the Cantor set) whatever we draw on paper
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cannot show all detail. We want pictures to represent basic properties, not the fine
detail. Do pictures represent the basic features of the Mandelbrot set?

Not always. In fact, almost all pictures of tiny sections of the boundary show
disconnected pieces of M, often resembling miniature copies of the whole set,
floating nearby. One might easily conclude from those pictures that M is not
connected—that it consists of a main body with an infinite number of islands
nearby (and an infinite number of islands near each of these, and so on).

The pictures are misleading.

Theorem (1982, Douady and Hubbard). The Mandelbrot set is connected.

The proof they presented [3] does not depend on pictures at all. The key is
analysis, not pictures. Here are the ideas. First, we can think of the Mandelbrot set
as a subset of the Riemann sphere 3 using stereographic projection. (Rest a
sphere on the plane with its south pole at the origin. Straight lines from each point
in the plane to the north pole intersect the sphere at one point, and this identifies
the plane with the sphere—with the north pole mapping to the point at infinity.)
The cover illustration for this issue shows the projection of M on 3. Now the
Mandelbrot set is connected precisely when its complement (in the sphere) is
simply connected, that is, when its complement has no holes.

Simply connected open subsets of the sphere play a central role in complex
analysis. In fact, the famous Riemann mapping theorem says that such a set which
is not the entire plane is equivalent to the unit disk A. The word “equivalent”
means that there is a homeomorphism (a one-to-one, continuous, onto map) that is
also analytic (i.e., has a power series expansion).

Hubbard and Douady turned the Riemann mapping theorem around; they
showed that there must exist such a map from the disk A to the complement of M
(in the sphere), and consequently the complement of M is simply connected,
showing that M itself is connected. Their map : A — X — M must have the form

1
Y(z)=—+by+bz+byz> +byz3+ - -
z
and, of course, if we knew all the coefficients b, then we would know exactly how

to map the disk to the complement of M. We would parametrize the complement
of M.

Open Problem

The map ¢ is a homeomorphism from the open disk to the (open) complement of
M. It does not extend to a homeomorphism on the boundaries. Does it even
extend to a continuous map? This is still unknown. From classical results we know
it extends if and only if the boundary of M is locally connected. For this reason, a
great deal of effort has been spent trying to prove what appears to be an arcane
topological result about the boundary.

In a lovely paper [5] Jungreis gave an algorithm for calculating those coefficients.
Knowing all coefficients b, for k <n, Jungreis showed how to compute b,. The
process was complicated, however, and it was hard to know how much error arose
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in the computation. Because some of those coefficients could be calculated
explicitly [1], [6], one could check the Jungreis algorithm to see how large the error
might be. All this was done in [4], where Glenn Schober and I computed the first
500,000 coefficients and showed that the error was likely to be within 1078 by
comparing the calculated values for certain coefficients with the known values.

Why should we be so interested in the map to the complement of M ? Because
this gives a new way to draw pictures of M, different from the pixel method. Think
of the mapping

1
z——>a,b(z)=;+b0+blz+b222+

in two steps. The reciprocal z — 1/z maps the interior of the unit disk A onto the
exterior, reversing orientation and sending the origin to «. The power series terms
by+b,z+b,z?+ -+ add a small distortion to make the image of ¢ the exterior
of M rather than the exterior of A. The image under ¢ of a circle |z| =r, r <1, is
a simple closed curve bounding a region M, which contains M. As r — 1 these
regions “shrink-wrap” M, as indicated in Figure 10.

Figure 10
Mapping the disk to the outside of M.

We therefore get two pictures of the Mandelbrot set, shown in Figure 11—one
using the pixel method described at the beginning, and one using our approxima-
tion to the map . Which picture is correct? Are they really different?

The Area of M

This last question is the important one. Since we have already agreed that the
Mandelbrot set is complicated, so that any picture will not represent all the detail,
we should ask whether the two pictures are all that different. And perhaps the best
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Figure 11
Two views of the Mandelbrot set.

way to measure the difference of two sets in the plane is to calculate the area of
each. Our aim therefore is to use each method of drawing M—the pixel method
and the ¢ method—to calculate the area. We hope the answers are close, and
hence the two pictures are not too far apart.

Calculating the area using the pixel method is relatively straightforward, similar
to the way you would calculate the area of a large, strangely shaped room by
counting floor tiles. We subdivide a region of the plane containing M into pixels
and calculate the fraction that are inside M. The area is that fraction of the
region’s area. The trick is, of course, to know when a pixel is inside (or partly
inside) the Mandelbrot set. We have already seen that this depends in part on the
give-up threshold, and the answer we get depends both on that threshold and on
the size of pixels we choose. By varying both the threshold and the pixel size,
however, we can watch how the answer varies and extrapolate to a single number:

The area of the Mandelbrot set found by the pixel method is 1.52.

How do we use the map ¢ to calculate the area? There is a beautiful trick (well
known to people who work in complex variables) to do this. It is an elegant
application of one of the basic theorems of calculus, Green’s theorem, which
allows one to compute the area of a (nice) subset of the plane by integrating
around the boundary. Integrating around the boundary of the Mandelbrot set is
not so easy, of course, but the map w = (z) provides a change of variable that
converts the problem of integrating around the Mandelbrot set to the problem of
integrating around a circle—and that certainly is much easier.

Here are some of the details.

Green’s theorem (symmetric form). For nice subsets S in the (u, v)-plane,

Area S=ffsdudu=%fsudv—udu.
a
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If we introduce a complex variable w =u +iv, then an elementary calculation
shows another compact form of Green’s theorem:

Area S = —1— wdw.
1738
(Careful: You need to use the fact that udu and vdv are “exact,” which means
their integrals around the boundary are zero.)

We can’t apply Green’s theorem directly to M, but can apply it to the sets M,,
which are the sets containing M and bounded by the image of |z| =r under .
We’ll find the area of M by squeezing in as r — 1. Applying Green’s theorem and
making a change of variable w = (z), we see that

1 _ 1 ,
Area (M,) = ZLM,de = qul:rt//(z)t// (z)dz.

We can use the power series expression for ¢ to compute this last integral. Since
2z =r* we have

z
Z) = — + b, + + + T
v(2) rz2 0 z z? z3

By differentiating term-by-term, we have

(/;’(z)=7+b1+2b22+3b322+

Multiplying these together and integrating around |z| = r gives the result. This is
easier than it looks because most of the terms in the product disappear when we
integrate:

J

z|=r

kg _ |27 ifk=—1
2dz {0 otherwise.

Collecting the coefficients of 1/z in the product and integrating, we obtain a
formula for the area of M,. (Careful: Because ¢ reverses orientation, we have to
integrate clockwise!)

1 YW
Area M, = *27/|.z|=rl,ll(z)(/f (z)dz

1/(-1
_ 27(7 by 22 4 20, 2t + 31y 2O )(—27Ti)

1
= w(—2 -y nlb,,lzrz").
r

nx=1

Finally, taking the limit as r — 1 gives an elegant formula for the area of M in
terms of the coefficients for ¢:

Area M=7r(1 -y nlbnlz).
n=0

We can use the first 500,000 coefficients to get an approxjmation (actually, an
upper bound) for the area:

The area of the Mandelbrot set found by the { method is 1.72.
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Conclusion

Which is it? Is the area 1.52? Is it 1.72? The answer is—we don’t know, not for
sure.

Does that surprise you? We don’t know the area of the Mandelbrot set to within
10% accuracy. How then can we use the computer to zoom in on small pieces of
the boundary that are no larger than a hydrogen atom? Are those really pictures of
the Mandelbrot set, or are they intricate shadows produced mainly by round-off
error in our computer and a badly chosen threshold? Again, the answer is: We
don’t know—not for sure.

What is the best guess for the area? The series for ¢ converges slowly—very
slowly—and it is likely that one needs not half a million terms but many orders of
magnitude more terms to produce a reasonable upper bound.

Pixel counting, however, has its own drawbacks. By using more sophisticated
algorithms (see [7]), we can approximate the distance of a point (outside) to the set
M, this gives a better way to measure whether a pixel should be counted inside M.
But the algorithm uses iteration, and there has not been a satisfactory analysis of
the error. Although the final answer is quite likely much closer to 1.52 than 1.72,
providing a convincing argument is not easy.

There is one strange possibility that has not been ruled out. Pixel counting
measures the area inside the Mandelbrot set, that is, the area of its interior. The
y-method gives an upper bound for the area of the entire set M, including its
boundary. Could the two answers be so different because the area of the boundary
is positive?

We don’t know—not for sure.

So...the next time you see one of those gorgeous pictures of the Mandelbrot
set, with swirls and dots and dainty patterns, that claims to represent the fine detail
of an amazingly complicated set, I hope you will admire the artistry...and
question the mathematics. I hope you will be a skeptic.

I am.
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