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Recently, a quick poll of our students indicated that, contrary to some present fash-
ions in calculus reform, neither epidemiology nor population dynamics was on our
18-year-olds’ short list of preoccupations. We did find that they thought a lot about
food, especially fast food, so we decided to pose a fast-food problem. Hamburg-
ers and pizzas being geometrically trivial, we settled on the problem of finding the
volume of a taco. A taco is the solid formed by bending a circular tortilla partway
around a cylinder and filling it in the obvious way—to the border, but not beyond!

A natural problem is to find shapes of cylinders that yield tacos of large volume.
Better still, we sought the shape that yields the biggest taco—the taco of largest
possible volume for a given tortilla. Unfortunately, we soon found that this was too
tall an order for our calculus students to fill; in fact, it is a nontrivial problem in the
calculus of variations. But with the help of a computer algebra system, students at all
levels can grab hold of this problem. We used Mathematica to plot graphs, evaluate
integrals, approximately solve transcendental equations, and search for the extreme
values of functions.

The main lesson our students carried away is that while many problems cannot be
solved exactly in terms of standard functions, reasonable approximations can often
be found by a combination of mathematical savvy and computational power. The
taco problem offers not only an attractive entry into the calculus of variations, but
also a painless encounter with several special functions that students traditionally
meet in more complicated circumstances.

Circular Cylinders

Take a disk of radius 1, centered at the origin in the zy-plane in xyz-space. This is
the tortilla. Now, lay a long circular cylinder of radius r on the zy-plane so that it
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Figure 1. Wrapping the shell.

rests on the z-axis. Bend the tortilla up around the cylinder, as in Figure 1. To make
sure the tortilla does not overlap, assume 7r > 1.

Now fill the taco shell with beans or whatever, to form a solid (taco) whose
boundary consists of the taco shell and the surface of segments parallel to the y-axis
joining pairs of points on the rim of the taco shell, as in Figure 1. The cross section
A, perpendicular to the z-axis at = has a flat top, as in Figure 2. (Note that near the
ends x = %1, the central angle 0, will be small, but near the center, when z ~ 0,
this angle may exceed 180°.)

Figure 2. A, is the shaded region.

We find an integral for the volume V' (r) of the taco as follows. The central angle
0, satisfies 78, = 2v/1 — 22, so

1 1 1 2
area(Ag) = 57’2070 — 57'2 sinf, =rv1—x2?— 57'2 sin (;\/ 1- x2> Y
Hence, setting x = sin 1), we get
! 1, [t 2
V(T)=r/ \/1—x2dx—§r2/ sin(;\/l—:ﬂ)da:
—1 —1

1, [™? 2
=T —7’2/ sin [ — cos | cosy dip
2 2 _7r/2 T

= 72—rr — %r2 /0” sin (% COS’I/)) cos i dip. (2)
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The last equality uses the fact that sin (2/r cos) cos ) is periodic of period 7 in 1.
The final integral in (2) is not elementary, and this is about as far as a competent
calculus student can go without a computer. When we put it in Mathematica, we

get the output ‘
1
mBesselJ [1,2\/ r_2:| Sign(r]. 3)

In traditional form (since r > 0), this is wJ; (2/7), where J; is a Bessel function, one
of the classical special functions [2] of mathematical physics. Thus,

V(r) = % <1 —rJy (%)) . (4)

There is an etymological curiosity here. Bessel functions are sometimes called cylin-
der functions because of their occurrence in solutions of boundary value problems in
cylindrical coordinates. Is it an accident that they appear in our cylindrical taco prob-
lem? We were a little surprised that this “higher transcendental function” emerges in
such a lowly problem.

Which r gives us the most for our money? A plot of V(r) leads one to conclude
beyond a reasonable doubt that V(r) has only one local maximum, near z = 0.5.
Ordinarily, to maximize V (r), one attempts to solve V'(r) = 0. Mathematica can
differentiate the special functions, and perhaps to emphasize that these functions
can be dealt with by the standard methods of calculus it is worthwhile to follow the
traditional approach. Mathematica gives

V() =3 [1 —2rJ, (%) +Jo (%) — T <%>] , (5)

for Jn(z) = 1/7 [ cos(ny — zsiny) dyp = 1/ [ cos [z cosp — (wn/2)] cos(nap) dip
(see [2]). The FindRoot command (Newton’s method) can then be used to find
the local maximum more precisely. Alternatively, one may avoid the differentiation
altogether and let the computer search for the maximum by applying the FindMin-
imum command to the function —V'(r). The result reported is that the maximum for
V(r) occurs at

r=rg=0.5727897... with V{(rp)=0.82713969.... (6)

When z = 0 (i.e., at the midsection Ap), the angle 6, of Figure 2 is 2/rq - 180/7 =
200.0586 . .. degrees, so the shell swings almost exactly 10° above a semicircle. We
will refer to this best cylindrical taco as the Besse! taco.

General Tacos: An Upper Bound for the Volume

Instead of bending our tortilla on a circular cylinder, we could use a parabolic,
elliptical, or indeed any reasonable cylinder. Note that the Bessel taco cannot give the
largest possible volume, because the inward facing =~ 10° arcs above the horizontal
diameter can be reflected across the vertical tangents to get a “flanged” taco that
strictly contains the Bessel taco.

Lety = y(z), for z > 0, be an increasing function satisfying y(0) = 0 and y(z) > 0,
for z > 0, and let C' be the cylinder obtained by translating the graph of y = y(z)
and its reflection in the z-axis along the z-axis. Bend the tortilla up around C' and
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y=y(2)

Figure 3

fill it as before. A typical cross section A, is shaded in Figure 3. Again the volume
of the taco is given by V = f_ll area(A;) dz.

It is easy to give an upper bound for the volume of any taco. Note that the width
of the flat tortilla in the plane at any z-value is 2v/1 — 22, and when the tortilla is
bent around C' this becomes the curved perimeter of the region A,. Let S, denote
the semicircular region with circular perimeter 24/1 — 22, and consider the plane
regions A, and S, obtained by reflecting both A, and S, through their boundary
segments, as in Figure 4.

Figure 4. Left, A; right, S,,.

The two regions have the same perimeter so, by the isoperimetric inequality [3], it
follows that area(A,) < area(S;)—the circle maximizes area with a given perimeter.
Thus, since the radius of S; = (2V1 —2?) /7, we get

area(A,) < area(S,) = (2/7)(1 — 2?),

SO

2 [t 8

V<—/ (1—2%)dr=-— =V =0.848826.. ... (7)
T J_1 3

Using (6), we get V/V(rg) = 1.02621. ... That is, no taco can be more than 2.63%

larger than the Bessel taco. Of course, we could form the solid having the semicircles

S as cross sections, but this is not a taco by our definition: it is not formed by

wrapping the tortilla on some type of cylinder. For a taco, A, can be a semicircle
for at most one value of |z|.

Some Computer Experiments

It turns out that for most computations, it is much better to use horizontal sections
rather than vertical sections. Let H, be the horizontal section of our filled taco at
height z—a rectangle. Recall that the width of the flat tortilla in the zy-plane for

VOL. 29, NO. 1, JANUARY 1998 5



any value of z is 24/1 — 2. When the half of this strip of the tortilla with a fixed
z-coordinate and y > 0 is bent around the cylinder C, the arc length of the curve
y = y(z) that it covers is s = v/1 — 2. Assume that the arc length along this curve
between the origin and a typical point (y(z),z) exists and is given by the usual

integral 5(z) = [ /14 ¢'(t)2 dt. The corners of the rectangular cross section H (z)
can then be expressed as (j:\/l —s(2)?, :I:y(z),z). Thus the volume of the filled
taco is given by

z
V= /0 dy(2)/1 — s(2)? dz, (8)

where Z is the z-coordinate of the highest points (O, ty(Z), Z) on the taco, the
points where s(Z) = 1.

Let's work out a typical example: finding the volume of the taco obtained by
wrapping the unit tortilla on a cylinder with a parabolic cross section of the form
z = (1/2¢)y%. (The parameter ¢ > 0 is the radius of curvature at (0,0).) Then

y(2) = V2cz, y'(2) = \/c/2z, and

s(c,z):/ \/l—i—y’(t)?dt:/ ,/1+—2%dt

0 0
= /= 4+ 2% + S arcsinh 2 9)
V2T T Ve )

(c
Vie) = /OZ )4'\/§c—z\/1 —s(c, 2)? dz, (10)

By (8),

where Z(c) can be found numerically via:
Z[c_]:=z/.FindRoot[s[c,z]==1,{z,0,1}]

Note that FindRoot returns the /ist {z—Z[c]}, while z/.{z—2Z[c]} gives the
number Z[c]. Because the integral in (10) cannot be carried out symbolically, (10)
defines the function V' (¢) numerically. Specifically:

V[c_]:=NIntegrate[4Sqrt[2cz] Sqrt[l-s[c,z]"2],{z,0,Z[c]}]

(11)

We can plot the graph of V(¢) and see that the maximum value occurs at ¢ = 0.3.
The command FindMinimum[-V[c], {c,0.2,0.4}] yields ¢ = 0.30440... and
the maximum volume V' (¢) = 0.80676.....

This is not nearly as good as the Bessel taco.

Exercise 1. Follow the same procedure to show that the largest volume taco whose
cross section is the graph of z = (1/4c)y* has volume V(c) = 0.816108.... (Here
¢ > 0 is not the radius of curvature at the origin: that is infinite.) The arc length
function s(c, z) for the parabolic cylinder involved only elementary functions (e.g.,
an inverse hyperbolic sine), but for z = (1/4c)y?, s(c, z) involves a special function
called a hypergeometric function. Actually, there are whole families of hypergeo-
metric functions, and many special functions (e.g., the Bessel functions above and
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elliptic functions below) can be expressed in terms of them [2]. Nevertheless, Mathe-
matica handles hypergeometric functions as well as elementary functions. For higher
powers or more complicated functions y(z), one can define s(c, z) numerically.

Exercise 2. Use the procedure above to find the maximum volume taco for circular
cylinders of radius v > 1/7, using horizontal cross sections rather than the A4,. You
will find that this time the arc length function s(r, z) involves an inverse tangent
function. Of course the maximum volume should be the volume of the Bessel taco.

(Hint: Start with y(2) = /12 — (z = 1)2)

Exercise 3. We can certainly do at least as well as the Bessel taco if we consider
the tacos wrapped on the two-parameter family of elliptical cylinders given paramet-
rically by y = asint, z = b(1 — cost), which includes the circular case. Verify that
the arc length of the ellipse from t =0 tot = < 7 is

R t b2
s(a,b,t)za/ 1—(1——2)sin2tdt
0 a

R b2
=aF <t

1— F) , (12)
where E(¢ | m) = f0¢ V1 —msin?tdt is the elliptic function of the second kind,
a standard special function of which Mathematica is well aware. In fact, one can
obtain (12) using Mathematica, but only if specific values for a and b are used. The
value of £, say T'(a,b), for which s(a,b,f) = 1 can be defined in Mathematica by
T[a_,b_]:=t/.FindRoot[s[a,b,t]==1,{t,0,Pi}], where we assume that
the perimeter of the ellipse is more than 2. Verify that the volume of the taco formed
on the elliptical cylinder is then

Vo) — /Ob(l—cosT(a,b)) 4y(z)\/1 . [a,b, srecos (1 B %)]2012:

T(a,b)
= / 4absin® tA/1 — s(a,b,t)2 dt. (13)
0

Figure 5 (page 8) is a Mathematica contour plot of the level curves of V(a,b)
from the level of the Bessel taco (about 0.82714) to 0.830 in 10 equal steps. If you
are patient (or have a fast computer), you may wish to try reproducing this plot.
The result suggests that there is a maximum around (a,b) = (0.57,0.68). (We first
transposed the arguments of V'(a, b), so that the picture—in the ba-plane—would be
wide instead of tall.) Verify that Figure 5 shows that there are elliptical tacos with b/a
as high as 1.4 that yield the same volume as the Bessel taco. Is this surprising? Check
that when the FindMinimum function in Mathematica is applied to the function
—V(a,b), you get the greatest volume if a = 0.57669 ... and b = 0.68327 ... (inside
the smallest contour in Figure 5), giving a volume of 0.830025 . ... This is just about
0.35% greater than the volume 0.827139. .. of the Bessel taco. Note that for this best
elliptical taco b/a ~ 1.185, so this taco differs appreciably in shape from the Bessel
taco. (Figure 7 on page 11 shows the semi-midsections of the biggest elliptical taco
and the Bessel taco.)
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The World’s Biggest Taco

Now let’s get serious about finding the curve y = y(z) that produces the biggest
possible taco. We shall assume that this curve can be parametrized by arc length, so
that it has parametric equations (y(s), z(s)), for 0 < s < 1. It is enough to find y(s),
since y/(s)% + 2/(s)> = 1, s0 2(s) = [ /1 —y/(0)? do.

We are faced with a problem in the calculus of variations. Generally, in the calculus
of variations one is given a function f(s,¢,u), and the task is to find a function y(s)
that maximizes (or minimizes) the integral

b
Jlyl = / £(s.u(s),9/(s)) ds, (14)

where y(a) and/or y(b) may or may not be specified. In our case, by (8), we want
to maximize J[y] = fol 4v1 = s2y(s)y/1 — y'(s)? ds, since 2'(s) = \/1 —y'(s)?. So
we have

f(s,t,u) =4v1 =82t/ 1 —u?, (15)

where a = 0, b =1, and y(0) = 0, with y(1) free (not specified).

Much of the elementary theory (see [1] or [4]) involves the calculation of local ex-
trema for the integral J[y] in the function space of sufficiently smooth candidates for
y(s). These are usually found to be solutions of the famed Euler-Lagrange differential
equation %f — 497 _ or more explicitly

ds Ou
o (5960 5) ~ = | 2 (s, 90,0/ 0) | =0, (16)

which is an ordinary differential equation (typically of order 2) for y(s). This equa-
tion is obtained by setting the “first derivative of J with respect to the function y”
(more commonly known as the first variation of J) equal to zero. We are, however,
looking for a global maximum. It turns out to be surprisingly difficult to find suffi-
cient conditions in the elementary standard literature that guarantee the existence of
a global maximum within a specified space of admissible functions.

More advanced treatments use so-called direct methods. In such methods, one
selects a suitable class, say C, of functions, called thereafter admissible functions,
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and first shows that the supremum of J[y] for y € C, say sup¢(J), is finite. (In our
case, we know that supe(J) < 8/37.) By the definition of supremum, a sequence of
functions y,, € C exists such that J[y,] converges to supe (J). The hard part is to select
a subsequence of the y,, that converges to an element yoo € C with J[yoo] > J[yn]
for all n. Since limy, 00 J[yn] = supe(J), it follows that J[ye] = supe(J). Often one
can show that y, is smooth enough that it will satisfy the Euler-Lagrange differential
equation (16). Then uniqueness results for differential equations can be brought to
bear as we try to prove the uniqueness of the maximizer yeo.

This is a sketch of the procedure that we used to obtain the following theorem.
We could not find a theorem in the literature that covers the case of our problem. A
major difficulty is that Qf(s,y, 1) does not exist. However, we managed to modify

ou
known methods to prove the existence and uniqueness of the global maximizer.

Theorem. Let C be the class of functions y(s) on [0,1] satisfying y(0) = 0 and
0<y(t)—y(s) <t—sforall0<s<t<1l. LetJ:C—|[0,1] be defined by

J[y] —/ 4\/1—32 8)V/1 —1/(s)2 ds. (18)

Then there is a unique function Yo € C such that Jy] = supq(J). Moreover,
Yoo IS infinitely differentiable on (0,1) with y. (07) = 1 and y.,(17) = 0. For

) =[5 V1= yho(0)2do, the curve (Yoo(s), 200(8)), for 0 < s < 1, is convex

with a borizontal tangent at (0,0) and a vertical tangent at (Yoo (1), 200 (1)).

The world’s biggest taco made from a unit tortilla is therefore obtained by wrap-
ping the tortilla around the cylinder with cross section given by the curve (yoo(s),
zoo(s)), 0 < s <1, and its reflection across the z-axis in the yz-plane.

Remarks. The condition 0 < y(t) — y(s) < t — s means that y is an increasing
Lipschitz function with Lipschitz constant 1. For such v, it is known that y/(s) exists
and 0 <¢/(s) < 1forall s € (0,1) outside a subset of Lebesgue measure 0 (i.e., a set
that is contained in a finite union of intervals of arbitrarily small total length). Thus,
J[y] is defined, as a Lebesgue integral. The proof of our theorem, which occupies
about 10 pages, involves nothing more advanced than Luzin’s theorem; a copy can
be requested by email from either author.

How Big Is the Biggest Taco?

We have no explicit expression for the function y (), SO we resort to approximation
methods. One such method is the Ritz method (see [1]), which goes as follows. Pick
a sequence of functions {pk(s)}32, such that y can be approximated by linear
combinations of the . Suppose that

Jn := max { [Z akgok} :Zakcpk € C} (18)
AQ,--+,0n k=0

exists. Under suitable conditions, J, will converge to supe J. If J, is attained by
n = Zzzo gk, it is not at all obvious that ¥, — Y. Nevertheless, in problems
where a unique solution ye is known explicitly, this Ritz method works very well—
and we may hope that the convergence will happen in our case as well.
To implement the Ritz method, we must first select a family of functions {¢g(s)}
such that yo, can be approximated by linear combinations of the ¢j. What functions
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would be appropriate? From the theorem, we know the general shape of the graph of
Yoo (8): it is increasing with slope 1 at the start and 0 at the end. Thus, if we extend
the domain of ys(s) to [0,2] by making it symmetric about s = 1, the extended
function is continuously differentiable (C*) and its graph might be as indicated in
Figure 6.

0l 1 2

The extended function is continuously differentiable and can be uniformly (indeed,
uniformly C') approximated by finite sine series of the form Y by, sin(nms/2). (Note
to the advanced reader: This series is 7ot necessarily a partial Fourier sine series of
the extended yo($), since y2 (1) is not known to exist, but the integrals of partial
sums of the Cesaro cosine series for y/ (s) will yield uniform C! approximations
of Yoo (8).) The symmetry condition ensures that only odd terms are needed. Thus,
Yoo(8) can be uniformly C' approximated by finite linear combinations of

wk(s)zsin[<k+%) m}, k=0,1,2,.... (19)

(Uniform C! approximations are needed, since J is continuous with respect to the
C* norm, but not the C° norm.) Since y/_(0%) = 1, we impose this condition on the
linear combinations Y y_, axpk; thus Y p_o(k + 3)mar = 1, or

smo

zn: 2k + 1)a (20)

k=1

In the case n = 0 we have only a single function yo(s) = agsin[(7/2)s], and the
boundary condition (20) gives ag = 2/7. We calculate J[yo] = 0.818808245. . ..

Exercise 4. Show that the curve ((yo(s),20(s)), for 0 < s < 1, is a quarter-circle
of radius 2/m and center (0,2/7), so that the midsection of the corresponding taco
shell is a semicircle, unlike that of the Bessel taco which extends about 10° above a
semicircle::

For n = 1, the boundary condition (20) gives ag = 2/m — 3a3, so

u(s) = 1 (s,a1) = (% - 3a1> sin <%7rs> +aysin (gﬂs> . (21)

We must select the parameter a; to maximize J{y1(-, a1)]. Applying FindMinimum
to —J[y1(-,a1)] gives Mathematica’s approximation of the value ay of a; for which
Jy1(+,a1)] is a maximum. The result 1eported is that @3 = 0.01527299..., which
gives ap = 2/m — 3y = 0.590800. .. and J[y(-, @1)] = 0.8299928. ... Continuing,
Mathematica yields Table 1. .
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Table 1. Computed Coefficients aq, . . ., an of yn(s).

n Volume ag [o %1 a2 [e %]

0 | 0.8188082450... 0.63661977... 0.0000000... 0.0000000... 0.0000000...

1| 0.8299928190... 0.59080079... 0.0152729... 0.0000000... 0.0000000...

2 | 0.8300296806... 0.59086832... 0.0141785... 6.43181...-10"% 0.0000000...

3 | 0.8300305150... 0.59084004... 0.0141903... 5.41265...-10~% 7.17586...-107°
4 | 0.8300305185... 0.59083911... 0.0141915... 5.40593...-10"% 7.65701...-10°
5 | 0.8300305229... 0.59083835... 0.0141923... 5.39598...-10"% 7.72059...-107°
6 | 0.8300305241... 0.59083805... 0.0141926... 5.39599...-10"* 7.76115...-107°
n a7} as ag

4 | —3.66294...-107%  0.0000000... 0.0000000...

5| —7.91771...-107% 3.38589...-107%  0.0000000...

6 | —8.19948...-107% 5.17710...-107% —1.46422...- 107

These results strongly suggest (but do not prove) that the largest possible volume
is about 0.8300305. ... If we have Mathematica plot the half cross section of the
Bessel taco, the best elliptical taco, and the best six-parameter Ritz taco, we obtain
Figure 7.

Figure 7

The best elliptical and Ritz taco curves nearly coincide. Indeed, their compound
curve is just a little thicker than each would be individually. The circular arc for the
Bessel taco is the rightmost (except near the top) curve in Figure 7.
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Conclusions

What do we know? We know that there is a biggest taco and there is only one, and
we know a couple of geometric facts about it. The only other thing we know for
sure is the pretty crude upper bound 8/3m = 0.8488263. .. from the isoperimetric
inequality. Beyond a reasonable doubt (e.g., an unknown flaw in the 166-MHz Pen-
tium chip, in Matbematica, or in our use of Mathematica), we have a lower bound
of 0.8300305 from the Ritz calculations. We believe that this coincides with the vol-
ume of the biggest taco up to and including the seventh decimal place, especially
since there is an unrelated iteration procedure that gives the same result. We do not
know that the functions y, that Ritz gives us converge to Yo, but the graphical evi-
dence is convincing. The midsection corresponding to yg (and even y3) is practically
indistinguishable from that of the best elliptical taco. Still, it would be nice to have
proofs and error estimates.

How well do you do at your favorite taco eatery? We briefly turned experimentalists
and purchased some empty taco shells from a well-known commercial establishment.
We filled them with damp sand, then measured the contents and found that the
volume was a mere 0.47 cubic units or about 57% of the optimal. In all fairness,
however, certain anatomical constraints must be taken into account.
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Aha!

Perhaps I could best describe my experience of doing mathematics in terms
of entering a dark mansion. One goes into the first room and it's dark,
completely dark. One stumbles around bumping into the furniture, and
then gradually you learn where each piece of furniture is, and finally after
six months or so you find the light switch. You turn it on—suddenly it’s all
illuminated! You can see exactly where you were.

Andrew Wiles in “Fermat’s Last Theorem ” on the BBC,
January 15, 1996; rebroadcast by PBS as “The Proof.”
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