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Calculus for Business and Social Sciences 
 

Using the Derivative to Solve an Optimization Problem 
 
Sami is a maintenance worker at a 
hospital in Baghdad. He has been asked 
to curtain off the area around a patient 
bed for privacy. The bed is in a corner of 
one ward, so the curtain needs to shield 
only two of its sides: there will be a 
square drape shielding one long side, 
and a smaller rectangular drape 
shielding the foot of the bed. Both 
lengths of curtain will drape from 
curtain rods suspended at equal heights 
from the ceiling of the hospital ward. 

 

 
 

At al-Mansour Hospital in Baghdad, a malnourished 
boy suffering from whooping cough is comforted by 
his mother before receiving an injection. 

 
Photo: Dan DeLong, Seattle Post-Intelligencer, 
January 20, 2001. Used by permission. 

 
 
 
 
 
 
 
 
 
 
 

 
The drapes, together with the walls, will 
help to enclose what can be thought of as a 
rectangular “box of privacy” around the 
bed. 

 
 
 
But this is where Sami faces a problem. Because of wartime devastation and supply shortages in 
Baghdad, the only material that he has available for the curtain rods is a 6-meter wooden pole, which 
he can cut into the two pieces that he needs. Sami is concerned to know how large a rectangular 
volume he will be able to enclose with these two pieces of curtain rod.  
 
Such problems, known as solid problems, have been studied and solved since ancient Greek times. 
In the medieval world, Arabic-speaking scholars in Baghdad developed new tools for solving such 
problems, as we will explore further below. 

bed 

square curtainrectangular 
curtain 
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Let’s signify the lengths of Sami’s two pieces of curtain rod by the letters x and y: 
 
 
 
 
 
 
 
The rectangular box will have corresponding dimensions, 
as shown at right. 
 
 
 
 
 
Exercise 1. First, let’s do some numerical experiments. 
 

(a) Write down an equation for y in terms of x, using the constraint that the rod is only 6 meters 
long. This is called the constraint equation. 

 
 
 
 
(b) In the table below, a variety of sample values of x are listed. Find the corresponding square 

area, x2. Then use the constraint equation to fill in the corresponding values of y. 
 
 

x (meters) x2 (square meters) y (meters) V (cubic meters) 
0    
1    
2    
3    
4    
5    
6    

 
 

(c)  Write a formula for the volume of the rectangular box, V, in terms of x and y. Since Sami’s 
objective is to determine which volumes are possible, this volume is called the objective 
function. 

 
 
 
 
(d)  Use the objective function to fill in the corresponding values of V in the table above. 

x y 

6 meters 

x 

y 

x 
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Exercise 2. Now, let’s do some graphing to see how the volume V varies as x varies. 
 

(a) Using the graph paper below, plot one point for each of the 7 rows in your chart. Choose 
the scales carefully. You won’t be able to use the same scale on both axes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Connect your 7 plotted points with a smooth curve. 
 

(c) Recall that the wooden pole is only 6 meters long, so that the points on the graph outside 
of the interval  0 ≤  x ≤ 6  are extraneous to the curtain design problem. Keeping this in 
mind, use your graph to make these predictions: 

 
The number of curtain designs that enclose a volume of 26 cubic meters is ________. 

 
The number of curtain designs that enclose a volume of 40 cubic meters is ________. 

 
(d) To view the graph on your calculator, first combine the objective and constraint equations 

to write the function V in terms of x alone. Leave your answer as a cubic function in 
descending degree form. 

 
 
 
 

(e) Type the function from part (d) into your calculator. Check the TABLE feature: the 
numbers there should match your table from Exercise 1. 
 

Exercise 3. Use the other graphing features of your calculator to answer these questions, 
accurate to 2 decimal digits: 

 
V = 26 cubic meters         when x = ______ and y = ______ meters 
 
                                   OR when x = ______ and y = ______ meters. 

 
V = 28 cubic meters         when x = ______ and y = ______ meters 
 
                                   OR when x = ______ and y = ______ meters. 

x

V 
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Sami wants to know the maximum volume that he can enclose using his curtain rods. The maximum 
volume is said to be optimal, and the problem is called an optimization problem. 
 
Based on your numbers in Exercise 1 and your graph in Exercise 2, you might have guessed that x = 
2 meters gives a curtain size of optimal volume. However, such guesses aren’t completely reliable. 
Usually, the optimal value of a variable isn’t a nice whole number like 2, but a hard-to-guess fraction 
like 19/7, or even an irrational number like √7. The graphical and numerical approaches can suggest 
estimates of the optimal values. But in general, finding the exact values, and being certain that they 
give us the very best solution, requires that we use an analytic approach based on algebra and 
calculus. 
 
Important breakthroughs in developing this 
analytic approach were made in the Middle 
Ages by scholars associated with libraries, 
referred to in Arabic at the time as “houses of 
wisdom.” These were essentially government-
supported research centers, the most famous one 
located in Baghdad in what is now Iraq. 
Scholars speaking many different languages 
arrived there from throughout the Middle East, 
but they conversed with each other in Arabic 
(that’s why many of our mathematical terms, 
such as “algebra,” “algorithm” and “zero,” came 
to us from Arabic). 
 
A discussion of what we would today call the 
derivative of a function has been found in an 
algebra treatise written in Baghdad in the year 
1209 by Sharaf al-Dīn al-Tūsī (1135-1213). 
Al-Tūsī was born in Persia (now Iran), and had 
already spent his life teaching in Damascus, 
Aleppo, Mosul and other cities before arriving 
in Baghdad. Al-Tūsī did not call his newly 
discovered function a “derivative.” In fact, he 
gave it no special name, and there is no 
evidence that he explored the concept 
thoroughly. It was just a tool he fashioned for 
solving a cubic polynomial problem much like 
Sami’s curtain problem. He did not record in his 
treatise his path of discovery, but modern 
scholars have reconstructed a plausible path, as 
outlined in Exercise 4 below. 
 

 

 
 

In al-Tūsī’s day, Iraq was one of the world’s 
leading centers for scientific inquiry. This 
miniature painting from the year 1236 depicts 
scholars at a house of wisdom in Basra, in 
southern Iraq. It was painted by Yahyā ibn 
Mahmūd al-Wāsitī, of Baghdad, copying from the 
original by al-Harīrī (1054-1122) in the 
manuscript Al-Maqāmāt. 
 

Bibliothèque nationale Française, Paris, Mss or., Arabe 5847. 

Like all other medieval mathematicians, al-Tūsī did not have algebraic symbols; instead, equations 
were written out rhetorically, that is, in words. But here, we use modern notation to abbreviate his 
work.  

 
Exercise 4. To find the maximum volume, we need to analyze V(x) in order to see whether the volume 
rises or falls when we change x by a small amount h. 

 
(a) Copy the cubic polynomial V(x) that you found in Exercise 2(d) above.  
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(b) Substitute  x + h  for  x  in the volume function, and expand the resulting terms. 
 
V(x + h) =   

 
 

(c) Collect like terms according to powers of h: 
 

V(x + h) =  (____________) + (____________)h + (_______)h2 + (___)h3 
 

(d) Compare with the original volume: 
 

V(x + h) – V(x)  =  (______________)h + (_________)h2 + (___)h3 
 

(e) Based on our work in Exercises 1 and 2, we suspected that values of x near 4 meters are 
important. Substituting this into your answer to part (d),  

 
If  x = 4,         then   V(x + h) – V(x)  =   ___h + ___h2 + ___h3 

 
(f) Factor your answer to part (e): 
 

If  x = 4,         then   V(x + h) – V(x)  =   (_______)h2 
 
 
(g) By determining the signs of the two factors in part (f), complete the following (circle the 

correct inequality symbol in each case): 
 

If  x = 4 and  h ≈ 0,    then    V(x + h) – V(x)   <   >    0 
 
                                  so       V(x)    <   >    V(x + h)      
 

Since x = 4 makes V(x) bigger than V(x + h) for all small values of h, then V(x) is the 
highest value of V  “in the neighborhood.” We call such a value a relative maximum.  

  
(h) Let’s remember that x = 4 is a relative maximum only because, in part (e), it made the 

coefficient of h that we’d found in part (d) vanish, that is, equal zero: 
 

 
(______________) = 0   
 
Now solve that equation: 
 
 
 
 

   x = ____________ 
 
 
(i) What would you advise Sami to do in order to curtain off the largest volume of privacy? 

 

Hey, cool! Compare this with the 
objective function V(x) from part 
(a) and notice that it’s exactly what 
we call the derivative. 


