Mathematics V1205y
 Calculus IIIS/IVA

Midterm Examination \#1
February 28, 2000
11:00 am - 12:15 pm

1. Evaluate the iterated integral $\int_{0}^{9} \int_{\sqrt{y}}^{3} \sin \left(\pi x^{3}\right) d x d y$.
2. Find the volume below the cone $z=r$ and above the unit disk centered at $r=1$, $\theta=0$.
3. Let E be the spherical box defined by

$$
E=\{(\rho, \theta, \phi): 0 \leq \rho \leq 1,0 \leq \theta \leq \pi / 4,0 \leq \phi \leq \pi / 2\}
$$

Sketch E carefully on axes labelled x, y, z. Then evaluate $\iiint_{E} \rho \sin \theta d V$.
4. Find the center of mass of the lamina that occupies the part of the unit disk $x^{2}+y^{2} \leq 1$ in the first quadrant, if the density at any point is proportional to its distance from the x-axis.
5. Find the surface area of that part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the x, y-plane.
6. Let $f(x)$ and $g(y)$ be continuous functions which are odd and even respectively: that is, $f(-x)=-f(x)$ while $g(-y)=g(y)$. For each of the following integrals, say whether it is $\leq 0, \geq 0,=0$, or impossible to tell. Give a very brief reason.
(a) $\int_{0}^{1} \int_{0}^{x+1}\left(2 f(x) g(y)-f(x)^{2}-g(y)^{2}\right) d y d x$;
(b) $\int_{0}^{1} \int_{y-1}^{1-y} f(x) g(y) d x d y$;
(c) $\int_{0}^{1} \int_{-1}^{1} f(x) g(y) d y d x$.

Some possibly useful integrals:

$$
\begin{aligned}
\int \sin ^{2} u d u & =\frac{1}{2} u-\frac{1}{4} \sin 2 u+C \\
\int \cos ^{2} u d u & =\frac{1}{2} u+\frac{1}{4} \sin 2 u+C \\
\int \tan ^{2} u d u & =\tan u-u+C \\
\int \sin ^{3} u d u & =-\frac{1}{3}\left(2+\sin ^{2} u\right) \cos u+C \\
\int \cos ^{3} u d u & =\frac{1}{3}\left(2+\cos ^{2} u\right) \sin u+C \\
\int \tan ^{3} u d u & =\frac{1}{2} \tan ^{2} u+\ln |\cos u|+C
\end{aligned}
$$

