
Again, b(2(x + 1) − 2x) = 2b, so differentiating again eliminates the b term:

2 = a (6(x + 1) − 6x) (6)

If we let x = 0 in each of the three equations, we obtain the system:

a + b + c = 1

3a + 2b = 2

6a = 2

which, though it is a system in three unknowns, is trivial to solve by back-substitution.

References

1. D. Acu, Some algorithms for the sums of the integer powers, Mathematics Magazine 61 (1988) 189–191.
2. D. Bloom, An old algorithm for the sums of the integers powers, Mathematics Magazine 66 (1993) 304–305.
3. C. Kelly, An algorithm for sums of powers, Mathematics Magazine 57 (1984) 296-297.
4. M. Krom, On sums of powers of natural numbers, The Two-Year College Mathematics Journal 14 (1983)

349–351.
5. G. W. Leibniz (translated by J. M. Child), The Early Mathematical Manuscripts of Leibniz, Open Court, 1920.
6. L. Zia, Using the finite difference calculus to sum powers of integers, The College Mathematics Journal 22

(1991) 294–300.

◦

The Pythagorean Theorem and Beyond: A Classification of
Shapes of Triangles
Guanshen Ren (Gren@css.edu), College of St. Scholastica, Duluth, MN 55811

The Pythagorean theorem is well known to almost all college students. Some ge-
ometry textbooks show that if a2 + b2 �= c2, then the triangle could be acute or obtuse.
In this note, we first ask the question: if a3 + b3 = c3, what kinds of triangle will we
have? More generally, what happens if an + bn = cn? To answer these questions, we
present an application of the law of cosines to analyze the shape of a triangle by the
equation an + bn = cn. We introduced this project in a geometry class for secondary
math education majors and students were excited about it.

To extend our investigation beyond the Pythagorean theorem, we ask what kind of
triangle has sides satisfying a3 + b3 = c3.

Such triangles exist. For example, we use the Geometer’s Sketchpad to construct
a triangle ABC with a = 2, b = 3, c = 3

√
35 ≈ 3.271, and then to measure the three

angles. All are less than 90 degrees as shown in Figure 1.
This example suggests that triangle ABC is acute. To give a formal proof in general,

we apply the law of cosines since it relates sides and angles in a triangle. Noting that
a3 + b3 = c3 implies that c > a and c > b, we have

a3 + b3 = c · c2 = c(a2 + b2 − 2ab · cos C).
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c = 3.27 in.
b = 3.00 in.
a = 2.00 in.

m � ACB = 78.95◦
m � CBA = 64.10◦
m � BAC = 36.95◦

C

a

BcA

b

Figure 1.

This implies that

cos C = a2(c − a) + b2(c − b)

2abc
> 0;

thus angle C must be acute. From a well known theorem of geometry, c > a and c > b
imply the measurements of angles A and B are less than the measurement of angle C ,
we know that a triangle is acute if a3 + b3 = c3. Since the converse to the Pythagorean
theorem says “using three sides of a triangle to construct three squares respectively,
if the area of the bigger square is equal to the sum of that of two smaller ones, then
the triangle is a right triangle,” we may interpret the above as “using three sides of a
triangle to construct three cubes respectively, if the volume of the bigger cube is equal
to the sum of that of the two smaller ones, then the triangle is an acute triangle.”

In general, we may ask what happens if an + bn = cn for n an integer greater than 3.
First note that c > a, c > b, then we have

an + bn = cn−2 · c2 = cn−2 · (a2 + b2 − 2ab cos C),

cos C = a2(cn−2 − an−2) + b2(cn−2 − bn−2)

2abcn−2
> 0.

Again this implies angle C must be acute, so triangle ABC is an acute triangle.
Therefore, we conclude that if the three sides of a triangle satisfy an + bn = cn ,
n ∈ N , n ≥ 3, it is an acute triangle. Of course, not every acute triangle must satisfy
an + bn = cn. An equilateral triangle is a counterexample.

The above arguments can be used to prove that the triangle will be acute even if
n is a real number (n > 2). But when n is a real number between 1 and 2, we have
a different result. First, such a triangle exists, for instance, a = 1, b = 4, c = 3

√
92,

n = 3
2 . Note that we still have, in this case, c > a, c > b. In order to apply the law of

cosines, we have to come up with an expression involving c2. Multiplying both sides
of the equation an + bn = cn by c2−n and applying the law of cosines, we have

(an + bn)c2−n = c2, cos C = an(a2−n − c2−n) + bn(b2−n − c2−n)

2ab
.

Since a2−n − c2−n < 0, b2−n − c2−n < 0, we have cos C < 0. Therefore, angle C is
obtuse. In this case we have an obtuse triangle.

Now we may classify the shape of a triangle whose sides satisfy the equation
an + bn = cn, where n is a real number, n ≥ 1. If 1 < n < 2, it is an obtuse triangle;
If n = 1, the triangle degenerates to a line segment; If n = 2, it is a right triangle (the
Pythagorean theorem); If n > 2, it is an acute triangle.
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An interesting observation is that if we fix two sides of a triangle, say a and b,
and let n become very large, then the triangle will approach an isosceles triangle. For
example, a = 2, b = 3, n = 10, then c = 10

√
210 + 310 ≈ 3.00516; if n = 20, then

c = 3.00005, which is very close to 3. In the limit case, as n approaches infinity, the
triangle becomes isosceles. In fact, from calculus point of view, this exactly is the
case. For fixed a and b with 0 < a < b, the limit of n

√
an + bn(= c) is b when n goes

to infinity.
Note that when n = 1, the triangle degenerates to a line segment. That is why we

do not consider the case 0 < n < 1. As an exercise, we leave it to students to inves-
tigate whether such a triangle exists with a, b, c as its sides satisfying the equation
an + bn = cn and 0 < n < 1.

◦

The Arithmetic of Algebraic Numbers: an Elementary
Approach
Chi-Kwong Li (ckli@math.wm.edu) and David Lutzer (lutzer@math.wm.edu), Col-
lege of William and Mary, Williamsburg, VA 23187

Let Q and R be the fields of rational and real numbers respectively. Recall that a real
number r is algebraic over the rationals if there is a polynomial p with coefficients in
Q that has r as a root, i.e., that has p(r) = 0. Any college freshman can understand that
idea, but things get more challenging when one asks about arithmetic with algebraic
numbers. For example, being the roots of x2 − 3 and x2 − 20 respectively, the real
numbers r1 = √

3 and s1 = 2
√

5 are certainly algebraic over the rationals, but what
about the numbers r1 + s1, r1s1 and r1

s1
? As it happens, all three are algebraic over

the rationals. For example, r1 + s1 is a root of x4 − 46x2 + 289. But how was that
polynomial constructed, and what rational-coefficient polynomials have r1s1 and r1

s1
as roots? Students who take a second modern algebra course will learn to use field
extension theory to show that the required polynomials must exist. They will learn
that whenever r and s �= 0 are algebraic over Q, then the field Q(r, s) is an extension
of Q of finite degree with the consequence that r + s, rs and r

s are indeed algebraic
over Q (see [2, 3, 7]). However, one would hope that students would encounter more
elementary solutions for such basic arithmetic questions. Furthermore, one might want
to know how to construct rational-coefficient polynomials that have r + s, rs and r

s as
roots and thereby obtain bounds on the minimum degrees of such polynomials.

The goal of this classroom note is to show how techniques accessible to students by
the end of their first linear algebra course can answer all of these questions. Our hope
is that modern algebra instructors will see such constructions as a source of student
projects that tie together ideas from linear algebra and modern algebra, and as a way
to study the field of algebraic numbers earlier in the usual modern algebra sequence.

We do not claim that our approach is new: the 1996 articles [5] and [1] included
the same ideas. However, for some reason, these earlier articles have not led to wide-
spread changes in the way textbook authors present the arithmetic of algebraic num-
bers. Therefore we believe that it is worth raising the ideas again.

Lemma. Suppose r and s are real numbers that are algebraic over Q with s �= 0.
Then r + s, rs and r

s are also algebraic over Q.
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