5.1.4 Maxima and minima Using Polyhedrons to Define Maximum Volumes, D. L. Carleton, 3:1, 1972, 30-32 Some Socially Relevant Applications of Elementary Calculus, Colin Clark, 4:2, 1973, 1-15, 6.1 An Interpolation Question Resolved by Calculus, Martin D. Landau and William R. Jones, 4:1, 1973, 36-39 Four Theorems About Montana, H. E. Reinhardt, 4:1, 1973, 76-78, C Construction of an Exercise Involving Minimum Time, Robert Owen Armstrong, 5:2, 1974, 12-14 Maximize x(a-x), L. H. Lange, 5:1, 1974, 22-24, 0.2 A Set of Trigonometric Inequalities with Applications to Maxima and Minima, Norman Schaumberger, 5:3, 1974, 26-30, 0.6 Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.2.2, 5.2.3, 5.2.5, 5.2.10, 5.4.2, 5.6.1, 5.7.2 What Is an Application of Mathematics?, Clifford Sloyer, 7:3, 1976, 19-26, 9.10 A Calculus Proof of the Arithmetic-Geometric Mean Inequality, Norman Schaumberger, 9:1, 1978, 16-17 On the "Rule of 72", Warren B. Gordon and Harold D. Shane, 10:2, 1979, 117-118, C An interesting way to test students' understanding of the first derivative test, Dick A. Wood, 10:2, 1979, 118, C How Good is the "Rule of 72"?, Alan Kroopnick, 10:4, 1979, 279-280, C Another way to test understanding of the first derivative test, Thomas M. Greene, 10:4, 1979, 282-283, C Must a "Dud" Necessarily Be an Inflection Point?, Michail W. Ecker, 12:5, 1981, 332-333, C A Bifurcation Problem in First Semester Calculus, W. L. Perry, 14:1, 1983, 57-60, C When Does a Square Give Maximum Area?, Ray C. Shiflett and Harris S. Shultz, 14:3, 1983, 194-196 Some Maximal Rectangles and the Realities of Applied Mathematics, Michael R. Latina, 14:3, 1983, 248-252 To Build a Better Box, Kay Dundas, 15:1, 1984, 30-36 The Maximum and Minimum of Two Numbers Using the Quadratic Formula, Dan Kalman, 15:4, 1984, 329-330, C, 9.5 The Problem of Managing a Strategic Reserve, David Cole, Loren Haarsma and Jack Snoeyink, 17:1, 1986, 48-60, 6.1, 9.10 A Note on Differentiation, Russell Euler, 17:2, 1986, 166-167, C Interactive Graphics for Multivariable Calculus, Michael E. Frantz, 17:2, 1986, 172-181, 1.2, 5.1.1, 5.7.1 Coloring Points in the Unit Square, Charles H. Jepsen, 17:3, 1986, 231-237, 3.1 Computer Algebra Systems in Undergraduate Mathematics, Don Small and John Hosack and Kenneth Lane, 17:5, 1986, 423-433, 1.2, 5.1.5, 5.2.2, 5.4.2 A Surprising Max-Min Result, Herbert Bailey, 18:3, 1987, 225-229, C Fibonacci Numbers and Computer Algorithms, John Atkins and Robert Geist, 18:4, 1987, 328-336, 6.3, 8.1 On Partitioning a Real Number, William Staton, 19:1, 1988, 53-54, C, 9.3 Behold! Two Extremum Problems (and the Arithmetic-Geometric Mean Inequality), Paolo Montuchi and Warren Page, 19:4, 1988, 347, C, 0.4 Hanging a Bird Feeder: Food for Thought, John W. Dawson, Jr., 21:2, 1990, 129-130, C Using a Computer Algebra System to Solve for Maxima and Minima, Robert Lopez and John Mathews, 21:5, 1990, 410-414 Extrema and Saddle Points, David P. Kraines and Vivian Y. Kraines and David A. Smith, 21:5, 1990, 416-418, C, 5.7.1 FFF #34. The Shortest Distance from a Point to a Parablola, Ed Barbeau, 22:2, 1991, 131, F (also 23:1, 1992, 38) The Isoperimetric Quotient: Another Look at an Old Favorite, G.D.Chakerian, 22:4, 1991, 313-315, C Using Computer Graphics to Help Analyze Complicated Functions, Paul B. Massell, 22:4, 1991, 327-331, 5.1.5 Individualized Computer Investigations for Calculus, Sheldon P. Gordon, 23:5, 1992, 426-428, C, 5.1.5, 0.7 The Best Shape for a Tin Can, P. L. Roe, 24:3, 1993, 233-236, C, 9.10 (see also Rectangular Cans, 28:3, 1997, 200, F) The Curious 1/3, James E. Duemmel, 24:3, 1993, 236-237, C What is the Biggest Rectangle You Can Put Inside a Given Triangle?, Lester H. Lange, 24:3, 1993, 237-240, C Old Calculus Chestnuts: Roast, or Light a Fire?, Margaret Cibes, 24:3, 1993, 241-243, C, 1.2 An Optimization Oddity, R. H. Eddy and R. Fritsch, 25:3, 1994, 227-229, C, 9.5 A Visual Proof of Eddy and Fritsch's Minimal Area Property, Robert Pare, 26:1, 1995, 43-44, C, 5.7.2 The Chair, the Area Rug, and the Astroid, Mark Schwartz, 26:3, 1995, 229-231, C, 5.6.1 The Rental Car Problem, Gary D. White and Kirby Smith, 27:5, 1996, 374-378, C, 5.2.1 Halley's Gunnery Rule, C. W. Groetsch, 28:1, 1997, 47-50, C Using the College Mathematics Journal Topic Index in Undergraduate Courses, Donald E. Hooley, 28:2, 1997, 106-109, 4.1, 4.2, 5.7.1 The Pen and the Barn, Peter Schumer, 28:3, 1997, 205-206, C FFF #123. A Foot by Any Other Name, David Protas, 29:1, 1998, 34, F (see also 30:2, 1999, 132) Two Historical Applications of Calculus, Alexander J. Hahn, 29:2, 1998, 93-103, 5.2.9 Minimal Pyramids, Michael Scott McClendon, 29:3, 1998, 224-226, C FFF #146. Maximizing a Subtended Angle, Richard Askey, 30:3, 1999, 210-211, F Measuring the Curl of Paper, Joseph Paullet and Richard Bertram, 30:4, 1999, 315-317, C, 0.6 Cable-laying and Intuition, Yael Roitboerg and Joseph Roitberg, 32:1, 2001, 52-54, C FFF #177. A Standard Box Problem, Dale R. Buske, 32:4, 2001, 282, F Research Questions from Elementary Calculus (Student Research Projects), Jack E. Graver and Lawrence J. Lardy, 32:5, 2001, 388-393 ItŐs Perfectly Rational, Philip K. Hotchkiss, 33:2, 2002, 113-117, 9.3 FFF #189. A gradation of problems, Karl Havlak, 33:2, 2002, 137-138, F The Distance Between Two Graphs, Rhonda Huettenmueller, 33:2, 2002, 142-143, C Moving a Couch Around a Corner, Christopher Moretti, 33:3, 2002, 196-200, 9.5 A Generalization of a Minimum Area Problem, Russell A. Gordon, 34:1, 2003, 21-23 A Dozen Minima for a Parabola, Leon M. Hall, 34:2, 2003, 139-141, C Constrained Optimization with Implicit Differentiation, Gary W. DeYoung, 34:2, 2003, 148-152, C Do Dogs Know Calculus?, Timothy J. Pennings, 34:3, 2003, 178-182 (see also 37:1, 2006, 19) Rational Boxes, Sidney Kung, 34:3, 2003, 182, C, 9.3 A New Wrinkle on an Old Folding Problem, Greg N. Frederickson, 34:4, 2003, 258-263, 5.2.7 FFF #214. The area under a tangent, Ed Barbeau, 34:4, 2003, 312-313, F, 5.1.3 Maximizing the Area of a Quadrilateral, Thomas Peter, 34:4, 2003, 315-316, C A Hairy Parabola, Aaron Montgomery, 34:5, 2003, 395-397, C Maximal Revenue With Minimal Calculus, Byron L. Walden, 34:5, 2003, 402-404, C FFF #222. Falling ball, Karl Havlak, 35:2, 2004, 122-123, F An Apothem Apparently Appears, Pat Cade and Russell A. Gordon, 36:1, 2005, 52-55, C Making a Bed, Anthony Wexler and Sherman Stein, 36:3, 2005, 213-221, 0.4 The Flip-Side of a Lagrange Multiplier Problem, Angelo Segalla and Saleem Watson, 36:3, 2005, 232-235, C, 5.7.1 Differentiate Early, Differentiate Often!, Robert Dawson, 36:5, 2005, 404-407, C Do Dogs Know Related Rates Rather than Optimization?, Pierre Perruchet and Jorge Gallego, 37:1, 2006, 16-18, 9.10 Do Dogs Know Calculus of Variations?, Leonid A. Dickey, 37:1, 2006, 20-23 The Tippy Trough, Donald Francis Young, 37:3, 2006, 205-213, 9.10 An Exceptional Exponential Function, Branko Curgus, 37:5, 2006, 344-354, 5.3.2, 5.3.4 An Introduction to Simulated Annealing, Brian Albright, 38:1, 2007, 37-42, 9.9 Do Dogs Know Bifurcations?, Roland Minton and Timothy J. Pennings, 38:5, 2007, 356-361, 9.10 FFF #270. Maximizing an area, Ed Barbeau, 38:5, 2007, 375, F, 0.4 FFF #271. Two distributivity howlers, John A. Quintanilla, 38:5, 2007, 375-376, F, 5.2.1 How to Measure Angles with a Ruler, Travis Kowalski, 39:4, 2008, 273-279, 0.4 FFF #287. Criticizing a critical point, Ollie Nanyes, 39:5, 2008, F, 383, 5.3.2 FFF #288. Maximizing a rational function, Ed Barbeau, 39:5, 2008, 385-386, F, 9.5