Linear Algebra
http://www.maa.org/taxonomy/term/42292/0
enDeterminants of the Tournaments
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/determinants-of-the-tournaments
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>Consider a tournament with \(n\) players where each player plays every other player once, and ties are not allowed. An \( n \times n\) tournament matrix \(A\) is constructed where diagonal entries are zero, \(A_{ij} = 1\) if \(i\) beats \(j\), and \(A_{ij}=-1\) if \(j\) beats \(i\). The authors demonstrate that the determinant of a tournament matrix is zero if and only if \(n\) is odd. Additionally, it is shown that the nullspace of a tournament matrix has dimension zero if \(n\) is even and dimension one if \(n\) is odd.</em></p>
</div></div></div>An Infinite Series for \(\pi\) with Determinants
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/an-infinite-series-for-pi-with-determinants
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>The author gives an expression for \(\pi\) involving an infinite sequence of determinants, each representing the area of a triangle.</em></p>
</div></div></div>The Existence of Multiplicative Inverses
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/the-existence-of-multiplicative-inverses
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>Using only basic ideas from linear algebra and number theory, the authors show that if \(c\) is square-free, the ring \(Q [\sqrt[n]{c}] \) is a field. An arbitrary nonzero element of the ring is associated with a system of equations, and divisibility arguments are used to show that a matrix of coefficients from the system must have a nonzero determinant, eventually leading to the result that the original element of the ring has an inverse. </em></p>
</div></div></div>The Arithmetic of Algebraic Numbers: An Elementary Approach
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/the-arithmetic-of-algebraic-numbers-an-elementary-approach
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>If \(r\) and \(s\) are algebraic numbers, then \(r + s\), \(rs\), and \(r/s\) are also algebraic. The proof provided in this capsule uses the ideas of characteristic polynomials, eigenvalues, and eigenvectors.</em></p>
</div></div></div>Using Quadratic Forms to Correct Orientation Errors in Tracking
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/using-quadratic-forms-to-correct-orientation-errors-in-tracking
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>If noise in data transmission produces a not quite orthogonal matrix that is known to be orthogonal, how does one find the "nearest" orthogonal matrix? This capsule recasts the problem as one of maximizing a quadratic form on the four-dimensional unit sphere, and sketches a solution.</em></p>
</div></div></div>Proof without Words: A 2 x 2 Determinant Is the Area of a Parallelogram
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/proof-without-words-a-2-x-2-determinant-is-the-area-of-a-parallelogram
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>The author presents a visual proof that the determinant of a 2 by 2 matrix equals the area of the corresponding parallelogram.</em></p>
</div></div></div>Computing the Fundamental Matrix for a Reducible Markov Chain
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/computing-the-fundamental-matrix-for-a-reducible-markov-chain
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>A Markov chain with 9 states is used to illustrate a technique for finding the fundamental matrix.</em></p>
</div></div></div>A Note on the Equality of the Column and Row Rank of a Matrix
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/a-note-on-the-equality-of-the-column-and-row-rank-of-a-matrix
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>An elementary argument, different from the usual one, is given for the familiar equality of row and column rank. The author takes “full advantage of the following two elementary observations: (1) For any vector \(x\) in \(\mathcal{R}^n\) and matrix \(A\), \(Ax\) is a linear combination of the columns of \(A\), and (2) vectors in the null space of \(A\) are orthogonal to vectors in the row space of \(A\), relative to the usual Euclidean product.”</em></p>
</div></div></div>The Axis of a Rotation: Analysis, Algebra, Geometry
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/the-axis-of-a-rotation-analysis-algebra-geometry
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>Given any 3 by 3 rotation matrix \(A\) (i.e. orthogonal with determinant \(1\) and an arbitrary vector \(x\), the vector \( Ax +A^{T}x+[1−\)tr\((A)]x\) lies on the axis of rotation. The article provides three different approaches, requiring various levels of background knowledge, to prove and/or explain the given result.</em></p>
</div></div></div>Notational Collisions
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/notational-collisions
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>This capsule points out several potential confusions in commonly used linear algebra notation.</p>
</div></div></div>Two by Two Matrices with Both Eigenvalues in \(Z/pZ\)
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/two-by-two-matrices-with-both-eigenvalues-in-zpz
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>This article provides a non-group theory approach to finding the number of two by two matrices over \( \mathbb{Z}/p\mathbb{Z} \) that have both eigenvalues in the same field. The strategy is to use the quadratic formula to find the roots of the characteristic polynomial of a matrix and then count the number of matrices for which these roots are in \( \mathbb{Z}/p\mathbb{Z} \).</em></p>
</div></div></div>A Geometric Approach to Linear Functions
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/a-geometric-approach-to-linear-functions
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>There are three somewhat distinct topics in this article: the condition for linear functions to commute, a linear function as a transformation of the number line, and linear difference equations. A linear function \(y=f(x)=ax+b\) can be characterized in terms of slope and the “center of reflection,” both of which reflect the geometric property of the function. </em></p>
</div></div></div>A Polynomial Taking Integer Values
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/a-polynomial-taking-integer-values
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>The article supplies a short, elementary proof that for integers \(a_1 < a_2 < \cdots < a_n \), the expression \( \prod_{n \geq i > j \geq 1} \frac{a_i - a_j}{i-j} \) is an integer. This previously known result is proved using the Vandermonde determinant. (Please note a typo in the first sentence of the paper where a fraction bar has been omitted.)</em></p>
</div></div></div>Does the Generalized Inverse of \(A\) Commute with \(A\)?
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/does-the-generalized-inverse-of-a-commute-with-a
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><em>Not all square matrices commute with their generalized inverse (Moore-Penrose inverse). The author gathers equivalent conditions for the generalized inverse of a matrix to commute with the matrix itself. Then he shows that, in this case, the generalized inverse may be represented as a polynomial in the given matrix.</em></p>
</div></div></div>On the Convergence of the Sequence of Powers of a \(2 \times 2\) Matrix
http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/on-the-convergence-of-the-sequence-of-powers-of-a-2-times-2-matrix
<div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>The fact that the <em>limit of the \(n\)-th power of a \(2\times 2\) matrix \(A\) tends to \(0\) if \( \det A < 1\) and \( \mid 1 + \det(A) \mid > \mid\) tr\( (A) \mid \)</em> is used to prove a well-known theorem in Markov chains for \(2 \times 2\) regular stochastic matrices and to obtain an explicit formula for the stationary matrix and eigenvector.</p>
</div></div></div>