When introducing double integrals, I like to show the students how we can use rectangular prisms to approximate the volume of the solid region between the region of integration (in the xy-plane) and the surface. It is nice to connect these approximations to the value we obtain by evaluating the corresponding double integral. Here is an exercise students can do to improve their understanding of this connection.
Exercise: Use 8 rectangular prisms to approximate the volume of the solid region between \(f(x,y)=4-x^2+y\) and the rectangular region R in the xy-plane given by \(-2\leq x \leq 2\) and \(0\leq x \leq 2\). Then use a double integral to find the exact volume of this solid region. Show all work on paper for both parts. Then use CalcPlot3D to create a graph of the region in the xy-plane along with the rectangular prisms you used and the surface above the region. Print a view of this graph that shows the surface and the rectangular prisms well. Use the Show grid scrollbars option on the Create Bounded Region dialog to vary the number of prisms in each direction. What do you notice happens to the volume of the prisms when you vary the number of prisms in the y-direction? Can you explain why this happens for this function? As you increase the number of prisms in the x-direction, does the volume of the prisms approach the exact volume you calculated? What is the volume of the prisms when there are 30 prisms in the x-direction?
![]() |
![]() |
![]() |
![]() |
To create these graphs:
The graphs below show another example: \(f(x, y) = (x^2 + y^2)/2\) over the region in the xy-plane bounded by the graphs of \(y = \frac{x^3}{4}\) and \(y=2\sqrt{\frac{x}{2}}.\)
![]() |
![]() |
![]() |
![]() |
Click here to open the CalcPlot3D applet in a new window.
Click here to open a pdf file which contains the instructions for the activity.