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The conventional meaning of the word “literate” (able to read and write) leaves the third of the three
R’s on its own, a separation that is reflected in the traditional curriculum: reading and writing are
taught together, and mathematics is taught as a separate subject. The first question to ask in
considering quantitative literacy and the curriculum is: Why can’t we leave it that way? What is new
in the world that prompts us to incorporate mathematics into the definition of literacy, or to believe
that mathematics must now be spread across the curriculum rather than contained in dedicated
courses? This question is answered persuasively in the opening section of Mathematics and Democ-
racy: The Case for Quantitative Literacy (Steen 2001): what is new in the world is the pervasiveness of
quantitative information and the necessity of acting on it. Thus the list of things a literate person
must be able to read and write has greatly expanded to include the many forms in which quantitative
information is represented in everyday life: graphs, charts, tables, maps, diagrams, and algorithms.

Furthermore, acting on quantitative information requires more than the basic level of comprehen-
sion that comes from listening to a story or looking at a picture; it requires the ability to extract the
relevant pieces from a possibly confusing abundance of data and perform appropriate mathematical
operations and reasoning on those pieces. The explosion in both the amount and variety of quan-
titative information, and the necessity of using such information in daily decisions, make the need
for quantitative literacy both new and urgent.

In considering how the school and college curriculum can lead students to achieve quantitative
literacy, it is crucial to keep in mind two aspects of quantitative literacy that are captured in a
definition of conventional literacy put forth by UNESCO (Fox and Powell 1991): “A literate is a
person who, with understanding, can both read and write a short simple statement on his everyday
life.”

This definition says that simply being able to read and write is not enough for literacy: understanding
and engagement with context (everyday life) also are required. The same applies to quantitative
literacy, and we might well adopt the modified definition: “A quantitatively literate person is a
person who, with understanding, can both read and represent quantitative information arising in his
or her everyday life.”

Although it might seem unnecessary to mention the criteria of understanding and context explicitly,
the fact is that in the traditional curriculum neither goes without saying. Therefore, we start by
considering how each might be applied in judging new curricula.
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The Role of Understanding
The ability to perform some of the basic operations of mathemat-
ics is necessary for quantitative literacy, but even the ability to
perform many of them is not sufficient. Anyone who has taught
mathematics, or who has taught a subject requiring the mathe-
matics that students have learned in previous courses, is aware of
this fact. Many students are technically capable but unable to
make reasonable decisions about which techniques to apply and
how to apply them. Mathematicians and their colleagues in other
departments share frustration at the fragility of what students
learn in their mathematics classes. We hesitate to call literate a
person who reads haltingly, picking out words one at a time with
no appearance of understanding what is being read; yet too many
of the students leaving mathematics courses use mathematics halt-
ingly if at all. Too many appear to be lacking in conceptual un-
derstanding.

We make a distinction here between conceptual understanding
and formal mathematical understanding. The latter refers to an
ability to formulate precise mathematical arguments that are uni-
versal in the sense that they work for all numbers or all polygons.
Conceptual understanding is understanding of a less formal na-
ture, more like what mathematicians sometimes call intuitive un-
derstanding. It refers to an ability to recognize underlying con-
cepts in a variety of different representations and applications. For
example, a student who understands the concept of rate knows
that the velocity of a moving object, the slope of its position graph,
and the coefficient of t in a formula giving its position as a func-
tion of time t are all manifestations of the same underlying con-
cept, and knows how to translate between them.

Even though recent efforts to reform mathematics education have
paid attention to conceptual understanding, it is often neglected
in mathematics classes. Sometimes, in the K–12 environment,
this is the result of drifting curricula that, in the absence of firm
guidance, gravitate inevitably toward convenient arrangements
between teacher and student, and teacher and parent that concen-
trate mostly on the correct performance of procedures. At other
times, it is a consequence of conscious decisions by curriculum
designers who believe in division of labor between mathematics
classes, which provide technical skills, and classes in mathemati-
cally intensive disciplines, which provide context and understand-
ing.

It is worth listening to the voices of teachers in those disciplines.
The Mathematical Association of America (MAA) recently con-
ducted a series of workshops with faculty from different disci-
plines as part of a project to develop recommendations for the
mathematics curriculum in the first two years of postsecondary
education. Again and again, the authors of these workshop re-

ports—engineers, physicists, biologists, chemists, computer sci-
entists, statisticians, and mathematicians—explicitly mentioned
understanding as a key goal of the mathematics curriculum, and
they made it clear that they thought that it was a proper role of
mathematics classes to teach it (Curriculum Foundations Project
2001):

Physics: Students need conceptual understanding first, and some
comfort in using basic skills; then a deeper approach and
more sophisticated skills become meaningful.

Life Sciences: Throughout these recommendations, the definition
of mastery of a mathematical concept recognizes the impor-
tance of both conceptual understanding at the level of defi-
nition and understanding in terms of use/implementation/
computation.

Chemical Engineering: . . . the “solution” to a math problem is
often in the understanding of the behavior of the process
described by the mathematics, rather than the specific closed
form (or numerical) result.

Civil Engineering: Introductory math content should focus on
developing a sound understanding of key fundamental con-
cepts and their relevance to applied problems.

Business: Mathematics departments can help prepare business stu-
dents by stressing conceptual understanding of quantitative
reasoning and enhancing critical thinking skills.

Statistics: Focus on conceptual understanding of key ideas of cal-
culus and linear algebra, including function, derivative, inte-
gral, approximation, and transformation.

What is striking about these reports is that so many science, math-
ematics, engineering, and technology (SMET) disciplines feel the
need to explicitly request conceptual understanding from mathe-
matics courses preparing their students. All the more must we
worry about the state of conceptual understanding in students
who are not preparing for SMET disciplines but simply need
quantitative literacy as a basic life skill. Thus, our first criterion:

A curriculum for quantitative literacy must go beyond the basic
ability to “read and write” mathematics and develop conceptual
understanding.

The Role of Context
The UNESCO definition specifies that a literate can read and
write a “statement . . . on his everyday life.” The term “everyday
life” is open to interpretation: everyday life in the examples above
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from the SMET disciplines might include chemical reactions in a
laboratory. The vast majority of students, however, are not headed
for SMET careers. For most people, everyday life might include
telephone rate plans, nutrition information on packages, or the
relative risks of a serious car accident versus being struck by light-
ning, for example. A quantitatively literate person must be able to
think mathematically in context. This requires a dual duty, mar-
rying the mathematical meaning of symbols and operations to
their contextual meaning, and thinking simultaneously about
both. It is considerably more difficult than the ability to perform
the underlying mathematical operations, stripped of their contex-
tual meaning. Nor is it sufficient simply to clothe the mathematics
in a superficial layer of contextual meaning. The mathematics
must be engaged with the context and be providing power, not an
engine idling in neutral. Too many attempts at teaching mathe-
matics in context amount to little more than teaching students to
sit in a car with the engine on, but not in gear. The “everyday life”
test provides a measure of engagement; everyday life that moves
forward must have an engine that is in gear.

We share two local examples outside of the training for traditional
SMET careers. The first is a “math for all citizens” example. One
of us (RMR) teaches a freshman-level general education science
course for nonscience majors. Reading graphs as pictures or
graphs as active conveyors of quantitative information is a desired
learning outcome for the course. For the past five years we have
used, in classes with as many as 325 students, the so-called Keeling
CO2 data set. This data set consists of a nearly continuous 50-year
record of monthly atmospheric CO2 concentration levels at
Mauna Loa, Hawaii (Keller 2000; Keeling and Whorf 2001).
Working in groups during a single lecture period, students ran-
domly select 15 data points from about a six-year (100-point)
portion of the data set. They plot this subset on an overhead
transparency and estimate the slope of the data. Using their slopes,
they estimate the number of years it will take for CO2 concentra-
tion to double, an important component of all climate models of
global warming. Because the small sample size of the data is insuf-
ficient to accurately reflect both an annual cycle and a long-term
increase, student estimates of slope and doubling times vary by at
least a factor of two. When all transparencies are superimposed
using an overhead projector, the annual cycle is clearly visible.
This exercise, although simple and completed in a single class
period, includes basic mathematical operations (slopes, rates, dou-
bling times) and issues of data quality and completeness, as well as
a contextual setting that is arguably one of the most important for
everyday life in the twenty-first century. (The Mauna Loa CO2

data set is very rich for quantitative literacy instruction. For ex-
ample, geologist Len Vacher at the University of South Florida
uses the same data set to show that errors in estimating slopes from
graphs are very common unless the axes of such graphs are under-
stood.)

Another example is a business mathematics course recently devel-
oped at the University of Arizona by a collaboration between the
Department of Mathematics and the College of Business and
Public Administration. In this course, students use mathematical
and technological tools to make business decisions based on real-
istic (in some cases, real) data sets. In one project, for example,
students decide whether to foreclose on a business loan or work
out a new payment schedule. They have available some informa-
tion about the value of the business, the amount of the loan, and
the likely future value if the business is allowed to continue but
still fails. They also have some demographic information about
the person running the business. Using historical records about
the success and failure of previous arrangements to work out a
payment schedule, they make successively more sophisticated cal-
culations of expected value to arrive at their decision. Students are
expected to understand both the mathematics and the business
context, and to make professional oral presentations of their con-
clusions in which they are expected to express themselves mathe-
matically, with clarity, completeness, and accuracy.

A noteworthy feature of this course is the level of involvement of
the business college. The impetus to create the course came from
the college, as do the basic ideas for projects. The visible involve-
ment of the college makes their students take seriously the require-
ment to understand the mathematics. Thus, our second criterion:

A curriculum for quantitative literacy must be engaged with a
context, be it everyday life, humanities, business, science, engi-
neering, or technology.

Mathematics and Democracy (Steen 2001) lists elements that
might compose quantitative literacy: confidence with mathemat-
ics, cultural appreciation, interpreting data, logical thinking, mak-
ing decisions, mathematics in context, number sense, practical
skills, prerequisite knowledge, symbol sense. Many of these ele-
ments arise naturally in applying the criteria we have given here,
and are, in varying proportions, necessary ingredients of a curric-
ulum for quantitative literacy. The precise proportions depend on
the educational level and background of the students. Symbol
sense, for example, is a rich vein in the everyday life of students in
the physical and social sciences and engineering, but perhaps not
as important to students in art or literature. On the other hand,
because all citizens are bombarded daily with statistical data and
inferences from it, reasoning logically and confidently with data is
a crucial component of any curriculum for quantitative literacy.

The odd man out in this list is “cultural appreciation.” In recent
years there has been a proliferation of general education courses,
taught by mathematics departments, that study such topics as
voting schemes, symmetry, and periodic tilings of the plane. Al-
though these “mathematics appreciation” courses often provide
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the serious engagement with quantitative information necessary
for quantitative literacy, they focus primarily on fostering a gen-
eral understanding of the uses of mathematics. Although there is
certainly a place in the curriculum for mathematics appreciation
courses, we believe an important difference exists between such
courses and quantitative literacy—just as there is a difference be-
tween the ability to appreciate a great work of art and the ability to
make some sketches of one’s own, however rudimentary. For
quantitative literacy, the element of engagement is crucial.

Who Is Responsible for Teaching
Quantitative Literacy?
This question has both a vertical dimension (in which grades
should quantitative literacy be taught?) and a horizontal dimen-
sion (in which departments?). Along the vertical dimension, we
are faced with the question of whether quantitative literacy is
properly a college subject at all. It can be argued that a good K–12
education should be sufficient to lay the foundations of quantita-
tive literacy, and that the proper role of colleges and universities,
typically in general education courses, is not to teach it but to use
it.

Whatever the ideal, the reality is that there are well-documented
problems with the mathematical performance of students in
grades K–12; see, for example, the Third International Mathe-
matics and Science Study (TIMSS). As a local confirmation of a
national issue, each year over 35 percent of freshman students
entering the University of Arizona, which has a four-year high
school mathematics entrance requirement, place below college al-
gebra.

Many people, including mathematics faculty, are working to im-
prove the situation. Mathematics faculty have focused on improv-
ing the teaching of mathematics in high schools and reforming
courses in mathematics departments in the first two years of col-
lege. The National Council of Teachers of Mathematics (NCTM)
issued standards for K–12 mathematics in 1989 (NCTM 1989)
and revised them in 2000 (NCTM 2000). Many states and local-
ities have endeavored to improve mathematics education by im-
plementing standards, frameworks, or high-stakes tests. At the
college level, the National Science Foundation (NSF) has funded
projects to reconsider curricula in pre-calculus, calculus, differen-
tial equations, and linear algebra. More recently, the Curriculum
Foundations Project of the Mathematical Association of America,
cited above, has initiated an ambitious undertaking aimed at for-
mulating recommendations for the first two years of undergradu-
ate mathematics.

Would improvements in mathematics education be sufficient to
remedy current deficiencies in quantitative literacy? Attempts to

change the mathematics curriculum—to make room earlier for
statistics and probability (as recommended by NCTM), to teach
mathematics in context, to pay attention to conceptual under-
standing, and to improve the mathematics education of K–12
teachers—would certainly move partway toward the changes
needed to improve quantitative literacy. Such improvements are
necessary. However, although the way mathematics is taught has a
lot to do with quantitative literacy, so do other things.

Quantitative literacy cannot be taught by mathematics teachers
alone, not because of deficiencies in teaching but because quanti-
tative material must be pervasive in all areas of a student’s educa-
tion. Quantitative literacy is not simply a matter of knowing how
to do the mathematics but also requires the ability to wed math-
ematics to context. This ability is learned from seeing and using
mathematics regularly in contexts outside the mathematics class-
room: in daily life, in chemistry class, in the business world. Thus,
quantitative literacy cannot be regarded as the sole responsibility
of high school mathematics teachers or of college teachers in
mathematics departments. It has long been recognized, for exam-
ple, that instruction in writing literacy, isolated in English com-
position courses, cannot succeed. Students quickly recognize that
a requirement satisfied by a course or two in a single department is
a local “hoop” to be jumped through, not a global requirement
central to their education. Students often behave as if mathemat-
ical ideas are applicable only in mathematics courses, so that once
they enter the world of their chosen major they can safely forget
whatever they learned in those courses.

It must therefore be the common responsibility of both mathe-
maticians and those in other disciplines to provide students with
basic skills, to develop conceptual understanding, and to model
the systematic use of mathematics as a way of looking at the world.
The pervasiveness of quantitative information in the world out-
side the classroom also must be reflected throughout academe. A
beautiful example of this pervasiveness is the recent foray into art
history by optical scientist Charles Falco and contemporary artist
David Hockney. These two have recently challenged traditional
art historian interpretations of fifteenth-century art. Using simple
optics, they have argued persuasively that a number of important
painters of the fifteenth century, from van Eyck to Bellini, used
lenses or mirrors to produce some of their paintings nearly 200
years earlier than had been believed possible. They argue that the
use of such optical instruments accounts for the sudden surge in
the reality of portraits in the fifteenth century (Hockney and Falco
2000). We can easily envision a wonderful application of quanti-
tative literacy in fine arts education if their arguments stand the
test of further scrutiny.

A persuasive argument can be made that the skills component of
quantitative literacy is essentially precollege in nature. What, this
argument goes, beyond the topics of precollege education (graphs,
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algebra, geometry, logic, probability, and statistics) is founda-
tional to quantitative literacy for everyday life? Looking at the
curriculum as a list of topics, however, misses an important point:
quantitative literacy is not something that a person either knows
or does not know. It is hard to argue that precollege education in
writing fails to cover the basics of grammar, composition, and
voice, for example. Yet it is widely accepted that writing is a skill
that improves with practice in a wide variety of settings at the
college level. We argue here that quantitative literacy at the college
level also requires an across-the-curriculum approach, providing a
wide variety of opportunities for practice.

The challenges to incorporating quantitative literacy across the
curriculum are many, including math anxiety on the part of both
faculty and students, lack of administrative understanding and
support, and competing pressures for various other literacy re-
quirements. We discuss below a variety of approaches that have
demonstrated success at the college level in moving quantitative
literacy across the curriculum. A more comprehensive discussion
would address how these approaches should be coordinated with
efforts to improve K–12 education, an issue we do not feel qual-
ified to address. It is worth pointing out, however, that improving
quantitative literacy at the college level would have an important
effect on K–12 education for the simple reason that it would
influence the mathematics education of K–12 teachers.

Mathematics Across the Curriculum
The term “mathematics across the curriculum” refers to attempts
to incorporate mathematical thinking in courses throughout the
university. The following excerpt from the vision statement of the
Mathematics Across the Curriculum committee at the University
of Arizona expresses the goals (2000):

The purpose of Mathematics Across the Curriculum at the
University of Arizona is to help students recognize the utility
of mathematics across disciplines and majors and to improve
their skills in mathematics. Just as all students should be able
to write an essay in any class they take, all students should be
able to look at a problem or situation in any class and be able
to formulate appropriate mathematical approaches to finding
solutions. They should also have the mathematical skills to
know how to seek solutions. Particular attention must be
paid to such fundamental processes as graphic representation
of quantitative data; estimation; basic numeracy (i.e., ability
to perform “basic” mathematical operations); and logic,
among other mathematical concepts and topics.

Various approaches to implementing mathematics across the cur-
riculum have been tried. We consider six approaches here: collab-
oration between mathematics and other faculty, gateway testing,

intensive instructional support, workshops for nonmathematics
faculty, quantitative reasoning requirements, and individual ini-
tiative by nonmathematics faculty. This is not intended to be an
exhaustive list of all possible approaches or all approaches that
have been tried, but rather an illustration of the range of possibil-
ities.

“FRIENDLY CONSPIRACIES” BETWEEN MATHEMATICIANS

AND OTHERS

Collaboration between mathematics faculty and faculty from other
departments is one powerful approach. This could involve a sort of
pact between mathematicians and others: mathematicians will add
more context to their courses, others will add more mathematical
concepts to theirs. Deborah Hughes Hallett writes of the need for
friendly conspiracies between mathematicians and other departments
to make sure this happens (Hughes Hallett 2001). The two-course
business mathematics sequence developed at the University of Ari-
zona is an example of such a conspiracy: students know that the
problems they are studying in their mathematics course will come up
again in their business courses, because they know that the course was
developed with significant input from the business college. Team-
teaching arrangements between mathematics and other departments
are another example of this collaborative approach.

One cautionary note on such collaborations is illustrated by a
survey conducted by the Mathematics Across the Curriculum
group at the University of Arizona. This survey was sent to faculty
in the College of Social and Behavioral Sciences who teach some
of the largest general education courses on campus. The responses,
completed by almost 33 percent of the group, included some
telling results. More than half responded positively to the ques-
tion, “Does any course you teach include any mathematical or
quantitative elements?” The most common elements included
statistics, slopes and rates, analysis of experimental outcomes,
graphs, formal reasoning, and decision theory. Faculty were also
asked, “Would you be willing to integrate some mathematical
elements into your courses?” Again, more than half responded
positively, although the response was cautious. For example, even
among the positive responses, faculty said, “I don’t see this as
central to the usefulness of the course. Emphasis on the mathe-
matics might actually distract students from the more important
(in this course!) learning,” and, “I would be reluctant to assign
stats-heavy reading, as most students do not seem to pay close
attention to such materials.” The faculty responding negatively
were split about evenly between “The course doesn’t seem com-
patible with the addition of mathematical content” and “My
background in mathematics is insufficient.” These responses, typ-
ical of faculty everywhere, highlight some of the challenges inher-
ent in establishing these friendly conspiracies.
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GATEWAY TESTING IN COURSES OUTSIDE MATHEMATICS

The University of Nevada, Reno, approaches quantitative literacy
by offering a set of mathematics competency tests in courses across
the university, based on a model described in an article by Steven
F. Bauman and William O. Martin (1995). The mathematics
covered by the tests is required for success in the courses, and is no
more than the students reasonably can be expected to have learned
already. The main purpose of the tests is to inform instructors and
students. Students may retake a test until they pass (a passing
grade is 80 percent). The initial test is held in class during the first
week of classes, to make clear that the test is an integral part of the
course; after that, a separate office, the Math Center, handles
grading and retesting, to make it feasible for instructors to use the
system. The Math Center also provides tutors who go over a failed
examination with each student and help him or her correct mis-
takes. Courses that have been involved with this program include
agricultural economics, anthropology, art, biology, chemistry,
economics, English, environmental studies, geography, geology,
mathematics core courses, nutrition, philosophy, physics, politi-
cal science, psychology, recreation, physical education, dance, so-
ciology, and Western traditions.

MATHEMATICS INSTRUCTIONAL SUPPORT

The Center for Mathematics and Quantitative Education at Dart-
mouth College (2001) functions as a laboratory support office for
the mathematics department, analogous to similar services avail-
able in other science departments. It houses equipment for use in
mathematics classrooms, books, videos, and prepared laboratory
activities. Some of these materials come from Mathematics Across
The Curriculum (MATC) courses at Dartmouth. The center also
provides consulting, classroom visitation, and videotaping ser-
vices, and runs a departmental Teaching Seminar during the sum-
mer. The center works in collaboration with similar offices in
other departments and supports courses in other departments that
feature mathematics as a key component. It reviews materials that
come out of the university’s MATC courses and makes those that
are suitable for K–12 available to teachers. It also facilitates links
between K–12 teachers and college professors for conversation
and collaboration across levels and disciplines.

WORKSHOPS FOR FACULTY OUTSIDE MATHEMATICS

Many disciplines, most commonly the SMET disciplines, have
come to recognize the importance of quantitative literacy and
some have organized regional or national workshops on the topic.
One group that has facilitated such workshops is Project Kaleido-
scope (PKAL 2002), an informal national alliance working to
build strong learning environments for undergraduate students in
mathematics, engineering, and the various fields of science. One
PKAL workshop, entitled “Building the Quantitative Skills of
Non-Majors and Majors in Earth and Planetary Science Courses,”
was held in January 1999 at the College of William and Mary. The

workshop brought together over 30 earth and planetary science
faculty from research-intensive, and four-year and two-year insti-
tutions to work together on such questions as:

● Which quantitative skills are important in our curriculum,
and at what levels?

● How do we include appropriate quantitative expectations in
our courses for nonmajors without sending some students
running for less quantitative offerings elsewhere on campus?

● How can a department work to build the quantitative skills of
its majors?

● Many students, nonmajors and majors, bring tremendous
fear, or “math anxiety,” to our courses. What support is nec-
essary to help students understand, use, and enjoy mathemat-
ics in our courses?

Such workshops have had a significant impact on how faculty
outside of mathematics view quantitative literacy, and have pro-
vided concrete strategies and “best practices” to help them trans-
form their courses. One example is the development of “Q-
Courses” (e.g., Marine Environmental Geology and Introduction
to Environmental Geology and Hydrology) at Bowdoin College
by a geology team that grew out of the 1999 PKAL workshop.

QUANTITATIVE REASONING REQUIREMENTS

Recognizing that quantitative literacy often is not ensured by their
entrance requirements, many colleges have instituted quantitative
reasoning requirements that must be satisfied by all graduates. At
some institutions, such as Harvard University and the University
of Michigan, there is an approved list of courses that satisfy the
requirement. An example of a more formal quantitative reasoning
requirement is the one at Wellesley College (2002). This consists
of a basic skills component, which is satisfied either by passing a
quantitative reasoning test or by taking a specific course, and an
overlay course component. The topics covered by the test are
arithmetic, algebra, graphing, geometry, data analysis, and linear-
ity. Overlay courses are taught within departments and engage
students in using these skills in reasoning about and interpreting
data in specific contexts. Guidelines specify the minimum neces-
sary exposure to data analysis for a course to qualify as an overlay
course. For example, such a course must address issues of collect-
ing, representing, and summarizing data and must require a work-
ing knowledge of probability, distributions, and sampling. The
goals of the overlay requirement are worth quoting for their reso-
nance with the issues of quantitative literacy:

Literacy. The number of topics, and depth of coverage, should be
sufficient to ensure that students have the basic knowledge
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they need in order to function in real-life situations involving
quantitative data.

Authenticity. Students should have experience in using authentic
numerical data. The experience should arise naturally in the
context of the course and actually advance the work of the
course. Only with such experience is the literacy goal likely to
be realized.

Applicability. The examples used in an overlay class should be
adequate to convince the average student that the methods
used in the analysis of data are of general applicability and
usefulness.

Understanding. A student’s experience with data analysis should
not be limited to rote application of some involved statistical
procedure. Rather, students should understand enough of
what they are doing so that their experience of data analysis is
likely to stay with them, at least as a residue of judgment and
willingness to enter into similar data analyses in the future.

Practicality. The breadth of topics covered, and the depth of cov-
erage, should be consistent with what an average Wellesley
student can realistically absorb in a course that devotes only a
part of its time to data analysis.

GOOD-CITIZEN MODEL OF CONCERNED

NONMATHEMATICS FACULTY

All the previous approaches involve either mathematics faculty or
specialized administrative units, but we should never underesti-
mate the power of nonmathematics faculty or departments acting
on their own initiative to advance quantitative literacy. There are
many such examples of individual faculty revising courses and
curricula simply because it is the right thing to do. Examples
include Len Vacher at the University of South Florida, Bill Pro-
thero at the University of California at Santa Barbara, Kim Kas-
tens at Columbia University, Larry Braille and Jon Harbour at
Purdue University, and Alexandra Moore at Cornell University.
These faculty may take advantage of some of the approaches listed
above, but they often are essentially lone crusaders for quantitative
literacy working in the trenches. Although they may attend work-
shops or seek NSF funding, for example, just as often they proceed
with little administrative support or interaction with mathematics
faculty. In fact, some are hampered by administrations that de-
pend on student credit hours as the coin of the realm, or student
evaluations that can tend to favor less quantitatively challenging
courses.

Given strong evidence of the success of these independent initia-
tives, we cannot but wonder at how much more effective such
efforts could be with the full involvement and cooperation of

mathematics faculty and college or university administrations. We
argue that one critical component of quantitative literacy across
the curriculum must be the support and nurturing of such initia-
tives. As one example of administrative support, we cite the reform
of the promotion and tenure system in the College of Science at
the University of Arizona for faculty whose primary scholarly
contribution is in the area of mathematics and science education.
This reform was recognized by NSF with one of just 10 Recogni-
tion Awards for the Integration of Research and Education (Uni-
versity of Arizona 1998).

Conclusions and Challenges
We have argued that conceptual understanding and everyday life
are two aspects of quantitative literacy deserving special attention.
The ability to adapt mathematical ideas to new contexts that is
part of conceptual understanding is a key component of quanti-
tative literacy. The everyday-life component of quantitative liter-
acy argues forcefully for engagement of faculty across the curric-
ulum. Quantitative literacy thus must be the responsibility of
teachers in all disciplines and cannot be isolated in mathematics
departments.

We have illustrated curricular approaches to quantitative literacy
at the college or university level that range from friendly conspir-
acies between mathematics and other faculty to administrative
structures and requirements to initiatives by individual nonmath-
ematics faculty. All offer success stories as well as war stories, both
of which serve as models for how we can work to improve quan-
titative literacy.

We end with two challenges. The approaches we have illustrated
must be only the start of continued and sustained efforts on the
parts of faculty and institutions. Significant institutional change
must occur to achieve the sort of pervasive use of mathematical
ideas that we think essential in teaching quantitative literacy. Nei-
ther administratively imposed solutions nor grassroots move-
ments will succeed alone; initiatives solely from within mathemat-
ics departments or solely from without are bound to fail. The first
challenge, therefore, is to cross the boundaries that separate disci-
plines and levels of administration. Administrators of university-
wide requirements must talk with the faculty who do the teaching
on the ground; pioneers in the classroom must talk to each other
and to administrators; departments of mathematics must collab-
orate with other departments.

Second, we must not lose sight of the fact that our goal is student
learning. It is far too easy, in the heat of battle over establishing
quantitative literacy requirements, setting up support centers, or
revising our individual courses, to forget that the student must be
the focus of our efforts. The question of “what works best” must
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be answered in terms of student learning. To do this, we must
establish clearly defined student learning outcomes in quantitative
literacy. We must be able to develop measures for these outcomes
as part of an ongoing assessment program. Key to the success of
such an assessment program is feedback on the way we are teach-
ing quantitative literacy. Without such formative assessment, de-
bates on how to improve quantitative literacy will be driven by
anecdotal experience and the force of individual personality. Stu-
dents deserve better.

We welcome the national focus on quantitative literacy and are
hopeful that the kinds of approaches described here may serve as
models for others.
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