You are here

Control Methods in PDE-Dynamical Systems

Fabio Ancona, Irena Lasiecka, Walter Littman, and Roberto Triggiani, editors
American Mathematical Society
Publication Date: 
Number of Pages: 
Contemporary Mathematics 426
We do not plan to review this book.

  • F. Ancona and A. Marson -- Asymptotic stabilization of systems of conservation laws by controls acting at a single boundary point
  • G. Auchmuty -- Variational principles for finite-dimensional initial value problems
  • G. Avalos and P. Cokeley -- Boundary and localized null controllability of structurally damped elastic systems
  • A. V. Balakrishnan -- Nonlinear aeroelastic theory: Continuum models
  • S. Benzoni-Gavage, R. Danchin, S. Descombes, and D. Jamet -- Stability issues in the Euler-Korteweg model
  • A. Bressan and W. Shen -- Optimality conditions for solutions to hyperbolic balance laws
  • I. Chueshov and I. Lasiecka -- Long-time dynamics of a semilinear wave equation with nonlinear interior/boundary damping and sources of critical exponents
  • R. M. Colombo and M. Garavello -- On the $p$-system at a junction
  • A. V. Fursikov -- Analyticity of stable invariant manifolds of 1D-semilinear parabolic equations
  • G. Hegarty and S. Taylor -- Boundary feedback stabilization of nonlinear beam models
  • V. Isakov -- Increased stability in the continuation for the Helmholtz equation with variable coefficient
  • J. R. King -- Microscale sensitivity in moving-boundary problems for the thin-film equation
  • W. Littman and S. Taylor -- The heat and Schrödinger equations: Boundary control with one shot
  • J. Serrin -- A remark on the Morrey potential
  • G. Todorova and B. Yordanov -- Nonlinear dissipative wave equations with potential
  • R. Triggiani and X. Xu -- Pointwise Carleman estimates, global uniqueness, observability, and stabilization for Schrödinger equations on Riemannian manifolds at the $H^1(\Omega)$-level