You are here

Spectral Theory of Differential Operators

T. Suslina and D. Yafaev, editors
American Mathematical Society
Publication Date: 
Number of Pages: 
American Mathematical Society Translations Series 2: Advances in the Mathemtatical Sciences Volume 225
We do not plan to review this book.


  • M. Solomyak and T. Suslina -- On the scientific work of M. Sh. Birman in 1998-2007
  • T. Suslina and D. Yafaev -- Continuation of the list of publications of M. Sh. Birman
  • M. Sh. Birman -- Perturbations of the continuous spectrum of a singular elliptic operator by varying the boundary and the boundary conditions
  • V. S. Buslaev and S. B. Levin -- Asymptotic behavior of the eigenfunctions of many-particle Schrödinger operator. I. One-dimensional particles
  • M. N. Demchenko and N. D. Filonov -- Spectral asymptotics of the Maxwell operator on Lipschitz manifolds with boundary
  • R. L. Frank and A. Laptev -- Spectral inequalities for Schrödinger operators with surface potentials
  • L. Friedlander and M. Solomyak -- On the spectrum of the Dirichlet Laplacian in a narrow infinite strip
  • E. Korotyaev and A. Kutsenko -- Lyapunov functions of periodic matrix-valued Jacobi operators
  • A. Laptev and A. V. Sobolev -- Hardy inequalities for simply connected planar domains
  • A. Pushnitski -- The spectral flow, the Fredholm index, and the spectral shift function
  • G. Raikov -- On the spectrum of a translationally invariant Pauli operator
  • G. Rozenblum and A. V. Sobolev -- Discrete spectrum distribution of the Landau operator perturbed by an expanding electric potential
  • Y. Safarov -- On the comparison of the Dirichlet and Neumann counting functions
  • O. Safronov -- Absolutely continuous spectrum of multi-dimensional Schrödinger operators with slowly decaying potentials
  • R. Shterenberg -- On discrete spectrum of the perturbed periodic magnetic Schrödinger operator with degenerate lower edge of the spectrum
  • T. A. Suslina -- Homogenization of periodic second order differential operators including first order terms
  • T. Weidl -- Improved Berezin-Li-Yau inequalities with a remainder term
  • D. R. Yafaev -- Spectral and scattering theory of fourth order differential operators