You are here

The Argument of Mathematics

Andrew Aberdein and Ian J. Dove, editors
Publication Date: 
Number of Pages: 
Logic, Epistemology, and the Unity of Science 30
There is no review yet. Please check back later.

Introduction.- Part I. What are Mathematical Arguments?.- Chapter 1. Non-Deductive Logic in Mathematics: The Probability of Conjectures; James Franklin.- Chapter 2. Arguments, Proofs, and Dialogues; Erik C. W. Krabbe.- Chapter 3. Argumentation in Mathematics; Jesús Alcolea Banegas.- Chapter 4. Arguing Around Mathematical Proofs; Michel Dufour.- Part II. Argumentation as a Methodology for Studying Mathematical Practice.- Chapter 5. An Argumentative Approach to Ideal Elements in Mathematics; Paola Cantù.- Chapter 6. How Persuaded Are You? A Typology of Responses; Matthew Inglis and Juan Pablo Mejía-Ramos.- Chapter 7. Revealing Structures of Argumentations in Classroom Proving Processes; Christine Knipping and David Reid.- Chapter 8. Checking Proofs; Jesse Alama and Reinhard Kahle.- Part III. Mathematics as a Testbed for Argumentation Theory.- Chapter 9. Dividing by Zero—and Other Mathematical Fallacies; Lawrence H. Powers.- Chapter 10. Strategic Maneuvering in Mathematical Proofs; Erik C. W. Krabbe.- Chapter. 11 Analogical Arguments in Mathematics; Paul Bartha.- Chapter 12. What Philosophy of Mathematical Practice Can Teach Argumentation Theory about Diagrams and Pictures; Brendan Larvor.- Part IV. An Argumentational Turn in the Philosophy of Mathematics.- Chapter 13. Mathematics as the Art of Abstraction; Richard L. Epstein.- Chapter 14. Towards a Theory of Mathematical Argument; Ian J. Dove.- Chapter 15. Bridging the Gap Between Argumentation Theory and the Philosophy of Mathematics; Alison Pease, Alan Smaill, Simon Colton and John Lee.- Chapter 16. Mathematical Arguments and Distributed Knowledge; Patrick Allo, Jean Paul Van Bendegem and Bart Van Kerkhove.- Chapter 17. The Parallel Structure of Mathematical Reasoning; Andrew Aberdein.- Index. ​