# Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

Discussion of 15th century French manuscript, with translation of its problems, including one with negative solutions
There is a number which when divided by 2, or 3, or 4, or 5, or 6, always has a remainder of 1, and is truly divisible by 7. It is sought what is the number.
Two merchants, A and B, loaded a ship with 500 hhds (hogsheads) of rum; A loaded 350 hhds, and B the rest; in a storm the seamen were obliged to throw overboard 100 hhds; how much must each sustain of the loss?
The edge of a cloud is at an altitude of 20 degrees and the sun above it at 35 degrees. The shadow cast by the edge of the cloud fall on a object 2300 yards away, how high is the cloud?
Two bicyclists travel in opposite directions around a quarter-mile track and meet every 22 seconds. When they travel in the same direction on this track, the faster passes the slower once every 3 minutes and 40 seconds. Find the rate of each rider
A man has four creditors. To the first he owes 624 ducats; to the second, 546; to the third, 492; and to the fourth 368.
Three vertical posts along a straight canal, each rising to the same height above the surface of the water. By using measurments of the posts, determine, to the nearest mile, the radius of the earth.
Determine the dimensions of the least isosceles triangle ACD that can circumscribe a given circle.
A ladder is placed perpendicular to the plane of the horizon, and in coincidence with the plane of an upright wall.
Suppose a person whose height is 5 feet 7 inches travels 10000 miles in the arc of a great circle. How much further will the person's head have gone compared to their feet, the circumference of the Earth being 21600 miles?