You are here

Two Quick Combinatorial Proofs of \(\sum_{k=1}^n k^3= \left ( \begin{array}{cc} n+1 \\ 2 \end{array} \right )^2\)

by Arthur T. Benjamin (Harvey Mudd College) and Michael E. Orrison (Harvey Mudd College)

This article originally appeared in:
College Mathematics Journal
November, 2002

Subject classification(s): Discrete Mathematics

Two proofs of the equality between the sum from \(1\) to \(n\) of \(k^3\) and \(\frac{n^2 (n+1)^2}{4}\).

A pdf copy of the article can be viewed by clicking below. Since the copy is a faithful reproduction of the actual journal pages, the article may not begin at the top of the first page.

To open this file please click here.

These pdf files are furnished by JSTOR.

Classroom Capsules would not be possible without the contribution of JSTOR.

JSTOR provides online access to pdf copies of 512 journals, including all three print journals of the Mathematical Association of America: The American Mathematical Monthly, College Mathematics Journal, and Mathematics Magazine. We are grateful for JSTOR's cooperation in providing the pdf pages that we are using for Classroom Capsules.

Average: 2.7 (25 votes)