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Some years ago while teaching the history of mathematics, I asked my students to read a 
discussion of maxima and minima by the seventeenth-century mathematician, Pierre Fermat. To 
start the discussion, I asked them, "Would you please define a relative maximum?" They told me 
it was a place where the derivative was zero. "If that's so," I asked, "then what is the definition of 
a relative minimum?" They told me, that's a place where the derivative is zero. "Well, in that 
case," I asked, "what is the difference between a maximum and a minimum?" They replied that in 
the case of a maximum, the second derivative is negative. 

What can we learn from this apparent victory of calculus over common sense? 
I used to think that this story showed that these students did not understand the calculus, but I 

have come to think the opposite: they understood it very well. The students' answers are a tribute 
to the power of the calculus in general, and the power of the concept of derivative in particular. 
Once one has been initiated into the calculus, it is hard to remember what it was like not to know 
what a derivative is and how to use it, and to realize that people like Fermat once had to cope 
with finding maxima and minima without knowing about derivatives at all. 

Historically speaking, there were four steps in the development of today's concept of the 
derivative, which I list here in chronological order. The derivative was first used; it was then 
discovered; it was then explored and developed; and it was finally defined. That is, examples of 
what we now recognize as derivatives first were used on an ad hoc basis in solving particular 
problems; then the general concept lying behind these uses was identified (as part of the invention 
of the calculus); then many properties of the derivative were explained and developed in 
applications both to mathematics and to physics; and finally, a rigorous definition was given and 
the concept of derivative was embedded in a rigorous theory. I will describe the steps, and give 
one detailed mathematical example from each. We will then reflect on what it all means-for the 
teacher, for the historian, and for the mathematician. 

The seventeenth-century background 

Our story begins shortly after European mathematicians had become familiar once more with 
Greek mathematics, learned Islamic algebra, synthesized the two traditions, and struck out on 
their own. Frangois Vieta invented symbolic algebra in 1591; Descartes and Fermat independently 
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invented analytic geometry in the 1630's. Analytic geometry meant, first, that curves could be 
represented by equations; conversely, it meant also that every equation determined a curve. The 
Greeks and Muslims had studied curves, but not that many-principally the circle and the conic 
sections plus a few more defined as loci. Many problems had been solved for these, including 
finding their tangents and areas. But since any equation could now produce a new curve, students 
of the geometry of curves in the early seventeenth century were suddenly confronted with an 
explosion of curves to consider. With these new curves, the old Greek methods of synthetic 
geometry were no longer sufficient. The Greeks, of course, had known how to find the tangents to 
circles, conic sections, and some more sophisticated curves such as the spiral of Archimedes, using 
the methods of synthetic geometry. But how could one describe the properties of the tangent at an 
arbitrary point on a curve defined by a ninety-sixth degree polynomial? The Greeks had defined a 
tangent as a line which touches a curve without cutting it, and usually expected it to have only one 
point in common with the curve. How then was the tangent to be defined at the point (0,O) for a 
curve hke y = x 3  (FIGUREl), or to a point on a curve with many turning points (FIGURE 2)? 

The same new curves presented new problems to the student of areas and arc lengths. The 
Greeks had also studied a few cases of what they called "isoperimetric" problems. For example, 
they asked: of all plane figures with the same perimeter, which one has the greatest area? The 
circle, of course, but the Greeks had no general method for solving all such problems. Seven- 
teenth-century mathematicians hoped that the new symbolic algebra might somehow help solve all 
problems of maxima and minima. 

Thus, though a major part of the agenda for seventeenth-century mathematicians-tangents, 
areas, extrema-came from the Greeks, the subject matter had been vastly extended, and the 
solutions would come from using the new tools: symbolic algebra and analytic geometry. 

Finding maxima, minima, and tangents 

We turn to the first of our four steps in the history of the derivative: its use, and also illustrate 
some of the general statements we have made. We shall look at Pierre Fermat's method of finding 
maxima and minima, which dates from the 1630's [S]. Fermat illustrated his method first in 
solving a simple problem, whose solution was well known: Given a line, to divide it into two parts 
so that the product of the parts will be a maximum. Let the length of the line be designated B and 
the first part A (FIGURE 3). Then the second part is B -A and the product of the two parts is 

Fermat had read in the writings of the Greek mathematician Pappus of Alexandria that a problem 
which has, in general, two solutions will have only one solution in the case of a maximum. This 
remark led him to his method of finding maxima and minima. Suppose in the problem just stated 
there is a second solution. For this solution, let the first part of the line be designated as A + E; 
the second part is then B - (A + E )  =B - A  - E. Multiplying the two parts together, we obtain 
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A B - A  

for the product 

Following Pappus' principle for the maximum, instead of two solutions, there is only one. So we 
set the two products (1) and (2) "sort of" equal; that is, we formulate what Fermat called the 
pseudo-equality: 

A B - A ~ = A B - A ~ - ~ A E + B E - E ~  
Simplifying, we obtain 

~ A E SE 2 =  BE 

and 

2 A + E = B .  
Now Fermat said, with no justification and no ceremony, "suppress E." Thus he obtained 

A = B/2, 

which indeed gives the maximum sought. He concluded, "We can hardly expect a more general 
method." And, of course, he was right. 

Notice that Fermat did not call E infinitely small, or vanishing, or a limit; he did not explain 
why he could first divide by E (treating it as nonzero) and then throw it out (treating it as zero). 
Furthermore, he did not explain what he was doing as a special case of a more general concept, be 
it derivative, rate of change, or even slope of tangent. He did not even understand the relationship 
between his maximum-minimum method and the way one found tangents; in fact he followed h s  
treatment of maxima and minima by saying that the same method-that is, adding E, doing the 
algebra, then suppressing E-could be used to find tangents [S, p. 2231. 

Though the considerations that led Fermat to his method may seem surprising to us, he did 
devise a method of finding extrema that worked, and it gave results that were far from trivial. For 
instance, Fermat applied his method to optics. Assuming that a ray of light which goes from one 
medium to another always takes the quickest path (what we now call the Fermat least-time 
principle), he used his method to compute the path taking minimal time. Thus he showed that his 
least-time principle yields Snell's law of refraction [T [12, pp. 387-3901. 

Though Fermat did not publish his method of maxima and minima, it became well known 
through correspondence and was widely used. After mathematicians had become familiar with a 
variety of examples, a pattern emerged from the solutions by Fermat's method to maximum- 
minimum problems. In 1659, Johann Hudde gave a general verbal formulation of this pattern [3, 
p. 1861, which, in modern notation, states that, given a polynomial of the form 

n 

y = C a ,xk ,  
k=O 

there is a maximum or minimum when 
n 

kakxk- '  =0 
k =  I 

Of even greater interest than the problem of extrema in the seventeenth century was the finding 
of tangents. Here the tangent was usually thought of as a secant for which the two points came 
closer and closer together until they coincided. Precisely what it meant for a secant to "become" a 
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tangent was never completely explained. Nevertheless, methods based on t h s  approach worked. 
Given the equation of a curve 

Fermat, Descartes, John Wallis, Isaac Barrow, and many other seventeenth-century mathemati- 
cians were able to find the tangent. The method involves considering, and computing, the slope of 
the secant, 

doing the algebra required by the formula for f (x  + h )  in the numerator, then dividing by h.  The 
diagram in FIGURE4 then suggests that when the quantity h vanishes, the secant becomes the 
tangent, so that neglecting h in the expression for the slope of the secant gives the slope of 
the tangent. Again, a general pattern for the equations of slopes of tangents soon became 
apparent, and a rule analogous to Hudde's rule for maxima and minima was stated by several 
people, including Rent: Sluse, Hudde, and Christiaan Huygens [3, pp. 185-1861. 

By the year 1660, both the computational and the geometric relationships between the problem 
of extrema and the problem of tangents were clearly understood; that is, a maximum was found 
by computing the slope of the tangent, according to the rule, and asking when it was zero. While 
in 1660 there was not yet a general concept of derivative, there was a general method for solving 
one type of geometric problem. However, the relationship of the tangent to other geometric 
concepts-area, for instance-was not understood, and there was no completely satisfactory 
definition of tangent. Nevertheless, there was a wealth of methods for solving problems that we 
now solve by using the calculus, and in retrospect, it would seem to be possible to generalize those 
methods. Thus in this context it is natural to ask, how did the derivative as we know it come to 
be? 

It is sometimes said that the idea of the derivative was motivated chiefly by physics. Newton, 
after all, invented both the calculus and a great deal of the physics of motion. Indeed, already in 
the Middle Ages, physicists, following Aristotle who had made "change" the central concept in his 
physics, logically analyzed and classified the different ways a variable could change. In particular, 
something could change uniformly or nonuniformly; if nonuniformly, it could change uniformly- 
nonuniformly or nonuniformly-nonuniformly, etc. [3, pp. 73-74]. These medieval classifications of 
variation helped to lead Galileo in 1638, without benefit of calculus, to his successful treatment of 
uniformly accelerated motion. Motion, then, could be studied scientifically. Were such studies the 
origin and purpose of the calculus? The answer is no. However plausible this suggestion may 
sound, and however important physics was in the later development of the calculus, physical 
questions were in fact neither the immediate motivation nor the first application of the calculus. 
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Certainly they prepared people's thoughts for some of the properties of the derivative, and for the 
introduction into mathematics of the concept of change. But the immediate motivation for the 
general concept of derivative-as opposed to specific examples like speed or slope of tangent-did 
not come from physics. The first problems to be solved, as well as the first applications, occurred 
in mathematics, especially geometry (see [I, chapter 71; see also [3; chapters 4-51, and, for 
Newton, [lA). The concept of derivative then developed gradually, together with the ideas of 
extrema, tangent, area, limit, continuity, and function, and it interacted with these ideas in some 
unexpected ways. 

Tangents, areas, and rates of change 

In the latter third of the seventeenth century, Newton and Leibniz, each independently, 
invented the calculus. By "inventing the calculus" I mean that they did three things. First, they 
took the wealth of methods that already existed for finding tangents, extrema, and areas, and they 
subsumed all these methods under the heading of two general concepts, the concepts which we 
now call derivative and integral. Second, Newton and Leibniz each worked out a notation whch 
made if. easy, almost automatic, to use these general concepts. (We still use Newton's k and we 
still use Leibniz's dy/dx and Jy dx.) Third, Newton and Leibniz each gave an argument to prove 
what we now call the Fundamental Theorem of Calculus: the derivative and the integral are 
mutually inverse. Newton called our "derivative" afluxion-a rate of flux or change; Leibniz saw 
the derivative as a ratio of infinitesimal differences and called it the differential quotient. But 
whatever terms were used, the concept of derivative was now embedded in a general subject-the 
calculus-and its relationship to the other basic concept, which Leibniz called the integral, was 
now understood. Thus we have reached the stage I have called discovery. 

Let us look at an early Newtonian version of the Fundamental Theorem [13, sections 54-5, 
p. 231. This will illustrate how Newton presented the calculus in 1669, and also illustrate both the 
strengths and weaknesses of the understanding of the derivative in this period. 

Consider with Newton a curve under which the area up to the point D = (x, y)  is given by z 
(see FIGURE 5). His argument is general: "Assume any relation betwixt x and z that you please;" 
he then proceeded to find y. The example he used is 

however, it will be sufficient to use z = x3 to illustrate his argument. 
In the diagram in FIGURE 5, the auxiliary line bd is chosen so that Bb = o, where o is not zero. 

Newton then specified that BK= v should be chosen so that area BbHK= area BbdD. Thus 
ov = area BbdD. Now, as x increases to x + o, the change in the area z is given by 
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whch, by the definition of v, is equal to ov. Now since 3x20 + 3x02+ o3= ov, dividing by o 
produces 3x2 + 3ox + 02 =v. Now, said Newton, "If we suppose Bb to be diminished infinitely 
and to vanish, or o to be nothlng, v and y in that case will be equal and the terms which are 
multiplied by o will vanish: so that there will remain.. ." 

What has he shown? Since (z(x + o) -z(x))/o is the rate at which the area z changes, that rate 
is given by the ordinate y. Moreover, we recognize that 3x2 would be the slope of the tangent to 
the curve z =x3. Newton went on to say that the argument can be reversed; thus the converse 
holds too. We see that derivatives are fundamentally involved in areas as well as tangents, so the 
concept of derivative helps us to see that these two problems are mutually inverse. Leibniz gave 
analogous arguments on this same point (see, e.g. [16,pp. 282-2841). 

Newton and Leibniz did not, of course, have the last word on the concept of derivative. 
Though each man had the most useful properties of the concept, there were still many unanswered 
questions. In particular, what, exactly, is a differential quotient? Some disciples of Leibniz, 
notably Johann Bernoulli and his pupil the Marquis de l'Hospital, said a differential quotient was 
a ratio of infinitesimals; after all, that is the way it was calculated. But infinitesimals, as 
seventeenth-century mathematicians were well aware, do not obey the Archimedean axiom. Since 
the Archmedean axiom was the basis for the Greek theory of ratios, which was, in turn, the basis 
of arithmetic, algebra, and geometry for seventeenth-century mathematicians, non-Archmedean 
objects were viewed with some suspicion. Again, what is a fluxion? Though it can be understood 
intuitively as a velocity, the proofs Newton gave in his 1671 Method of Fluxions all involved an 
"indefinitely small quantity 0," 114,pp. 32-33] which raises many of the same problems that the o 
which "vanishes" raised in the Newtonian example of 1669 we saw above. In particular, what is 
the status of that little o? Is it zero? If so, how can we divide by it? If it is not zero, aren't we 
making an error when we throw it away? These questions had already been posed in Newton's and 
Leibniz's time. To avoid such problems, Newton said in 1687 that quantities defined in the way 
that 3x2 was defined in our example were the limit of the ratio of vanishing increments. This 
sounds good, but Newton's understanding of the term "limit" was not ours. Newton in his 
Principia (1687) described limits as "ultimate ratiosu-that is, the value of the ratio of those 
vanishing quantities just when they are vanishing. He said, "Those ultimate ratios with whch 
quantities vanish are not truly the ratios of ultimate quantities, but limits towards which the ratios 
of quantities decreasing without limit do always converge; and to which they approach nearer 
than by any given difference, but never go beyond, nor in effect attain to, till the quantities are 
diminished in infinitum" [15,Book I, Scholium to Lemma XI, p. 391. 

Notice the phrase "but never go beyondw-so a variable cannot oscillate about its limit. By 
"limit" Newton seems to have had in mind "bound," and mathematicians of his time often cite 
the particular example of the circle as the limit of inscribed polygons. Also, Newton said, 
"nor. .  . attain to, till the quantities are diminished in infinitum." This raises a central issue: it was 
often asked whether a variable quantity ever actually reached its limit. If it did not, wasn't there 
an error? Newton did not help clarify this when he stated as a theorem that "Quantities and the 
ratios of quantities which in any finite time converge continually to equality, and before the end of 
that time approach nearer to each other than by any given difference, become ultimately equal" 
115,Book I, Lemma I, p. 291. What does "become ultimately equal" mean? It was not really clear 
in the eighteenth century, let alone the seventeenth. 

In 1734, George Berkeley, Bishop of Cloyne, attacked the calculus on precisely h s  point. 
Scientists, he said, attack religion for being unreasonable; well, let them improve their own 
reasoning first. A quantity is either zero or not; there is nothing in between. And Berkeley 
characterized the mathematicians of his time as men "rather accustomed to compute, than to 
think" 121. 
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Perhaps Berkeley was right, but most mathematicians were not greatly concerned. The concepts 
of differential quotient and integral, concepts made more effective by Leibniz's notation and by 
the Fundamental Theorem, had enormous power. For eighteenth-century mathematicians, espe- 
cially those on the Continent where the greatest achievements occurred, it was enough that the 
concepts of the calculus were understood sufficiently well to be applied to solve a large number of 
problems, both in mathematics and in physics. So, we come to our third stage: exploration and 
development. 

Differential equations, Taylor series, and functions 

Newton had stated hls three laws of motion in words, and derived his physics from those laws 
by means of synthetic geometry [15]. Newton's second law stated: "The change of motion [our 
'momentum'] is proportional to the motive force impressed, and is made in the direction of the 
[straight] line in which that force is impressed" [15, p. 131. Once translated into the language of the 
calculus, this law provided physicists with an instrument of physical discovery of tremendous 
power-because of the power of the concept of the derivative. 

To illustrate, if F is force and x distance (so m i  is momentum and, for constant mass, mx the 
rate of change of momentum), then Newton's second law takes the form F= mx. Hooke's law of 
elasticity (when an elastic body is distorted the restoring force is proportional to the distance [in 
the opposite direction] of the distortion) takes the algebraic form F= -kx. By equating these 
expressions for force, Euler in 1739 could easily both state and solve the differential equation 
mx + kx = 0 which describes the motion of a vibrating spring [lo, p. 4821. It was mathematically 
surprising, and physically interesting, that the solution to that differential equation involves sines 
and cosines. 

An analogous, but considerably more sophisticated problem, was the statement and solution of 
the partial differential equation for the vibrating string. In modern notation, this is 

where T is the tension in the string and p is its mass per unit length. The question of how the 
solutions to this partial differential equation behaved was investigated by such men as d'Alembert, 
Daniel Bernoulli, and Leonhard Euler, and led to extensive discussions about the nature of 
continuity, and to an expansion of the notion of function from formulas to more general 
dependence relations [lo, pp. 502-5141, [16, pp. 367-3681. Discussions surrounding the problem 
of the vibrating string illustrate the unexpected ways that discoveries in mathematics and physics 
can interact ([16, pp. 351-3681 has good selections from the original papers). Numerous other 
examples could be cited, from the use of infinite-series approximations in celestial mechanics to 
the dynamics of rigid bodies, to show that by the mid-eighteenth century the differential equation 
had become the most useful mathematical tool in the history of physics. 

Another useful tool was the Taylor series, developed in part to help solve differential equations. 
In 1715, Brook Taylor, arguing from the properties of finite differences, wrote an equation 
expressing what we would write as f (x  + h) in terms off (x )  and its quotients of differences of 
various orders. He then let the differences get small, passed to the limit, and gave the formula that 
still bears his name: the Taylor series. (Actually, James Gregory and Newton had anticipated this 
discovery, but Taylor's work was more directly influential.) The importance of this property of 
derivatives was soon recognized, notably by Colin Maclaurin (who has a special case of it named 
after him), by Euler, and by Joseph-Louis Lagrange. In their hands, the Taylor series became a 
powerful tool in studying functions and in approximating the solution of equations. 

But beyond this, the study of Taylor series provided new insights into the nature of the 
derivative. In 1755, Euler, in his study of power series, had said that for any power series, 

one could find x sufficiently small so that if one broke off the series after some particular 

VOL. 56, NO. 4, SEPTEMBER 1983 



term-say x2-the x 2  term would exceed, in absolute value, the sum of the entire remainder of 
the series 16, section 1221. Though Euler did not prove this-he must have thought it obvious since 
he usually worked with series with finite coefficients-he applied it to great advantage. For 
instance, he could use it to analyze the nature of maxima and minima. Consider, for definiteness, 
the case of maxima. Iff ( x )  is a relative maximum, then by definition, for small h, 

f ( x - h ) < f ( x )  and f ( x + h ) < f ( x ) .  
Taylor's theorem gives, for these inequalities, 

Now if h is so small that h df (x)/dx dominates the rest of the terms, the only way that both of the 
inequalities (3) and (4) can be satisfied is for df(x)/dx to be zero. Thus the differential quotient is 
zero for a relative maximum. Furthermore, Euler argued, since h2 is always positive, if 
d2f(x)/dx2 # 0, the only way both inequahties can be satisfied is for d2f(x)/dx2 to be negative. 
T h s  is because the h2 term dominates the rest of the series-unless d2f(x)/dx2 is itself zero, in 
which case we must go on and h n k  about even higher-order differential quotients. This analysis, 
first given and demonstrated geometrically by Maclaurin, was worked out in full analytic detail by 
Euler [6, sections 253-254],[9, pp. 117- 1181. It is typical of Euler's ability to choose computations 
that produce insight into fundamental concepts. It assumes, of course, that the function in 
question has a Taylor series, an assumption which Euler made without proof for many functions; 
it assumes also that the function is uniquely the sum of its Taylor series, which Euler took for 
granted. Nevertheless, this analysis is a beautiful example of the exploration and development of 
the concept of the differential quotient of first, second, and nth orders-a development which 
completely solves the problem of characterizing maxima and minima, a problem which goes back 
to the Greeks. 

Lagrange and the derivative as a function 

Though Euler did a good job analyzing maxima and minima, he brought little further 
understanding of the nature of the differential quotient. The new importance given to Taylor 
series meant that one had to be concerned not only about first and second differential quotients, 
but about differential quotients of any order. 

The first person to take these questions seriously was Lagrange. In the 1770's, Lagrange was 
impressed with what Euler had been able to achieve by Taylor-series manipulations with 
differential quotients, but Lagrange soon became concerned about the logical inadequacy of all 
the existing justifications for the calculus. In particular, Lagrange wrote in 1797 that the 
Newtonian limit-concept was not clear enough to be the foundation for a branch of mathematics. 
Moreover, in not allowing variables to surpass their limits, Lagrange thought the limit-concept too 
restrictive. Instead, he said, the calculus should be reduced to algebra, a subject whose foundations 
in the eighteenth century were generally thought to be sound [ll,pp. 15-16]. 

The algebra Lagrange had in mind was what he called the algebra of infinite series, because 
Lagrange was convinced that infinite series were part of algebra. Just as arithmetic deals with 
infinite decimal fractions without ceasing to be arithmetic, Lagrange thought, so algebra deals 
with infinite algebraic expressions without ceasing to be algebra. Lagrange believed that expand- 
ing f ( x  + h) into a power series in h was always an algebraic process. It is obviously algebraic 
when one turns 1/(1 - x) into a power series by dividing. And Euler had found, by manipulating 
formulas, infinite power-series expansions for functions like sin x, cos x, ex. If functions Me  those 
have power-series expansions, perhaps everything could be reduced to algebra. Euler, in his book 
Introduction to the analysis of the infinite (Introductio in analysin infinitorurn, 1748), had studied 
infinite series, infinite products, and infinite continued fractions by what he thought of as purely 



algebraic methods. For instance, he converted infinite series into infinite products by treating a 
series as a very long polynomial. Euler thought that this work was purely algebraic, and-what is 
crucial here-Lagrange also thought Euler's methods were purely algebraic. So Lagrange tried to 
make the calculus rigorous by reducing it to the algebra of infinite series. 

Lagrange stated in 1797, and thought he had proved, that any function (that is, any analytic 
expression, finite or infinite) had a power-series expansion: 

except, possibly, for a finite number of isolated values of x. He then defined a new function, the 
coefficient of the linear term in h which is p (x )  in the expansion shown in (5)) and called it the 
first derived function off (x). Lagrange's term "derived function" (fonction derivee) is the origin 
of our term "derivative." Lagrange introduced a new notation, f l (x) ,  for that function. He defined 
f"(x) to be the first derived function of fl(x), and so on, recursively. Finally, using these 
definitions, he proved that, in the expansion (5) above, q(x) =f "(x)/2, r (x)  =f "'(x)/6, and so 
on [ l l ,  chapter 21. 

What was new about Lagrange's definition? The concept of function-whether simply an 
algebraic expression (possibly infinite) or, more generally, any dependence relation-helps free 
the concept of derivative from the earlier ill-defined notions. Newton's explanation of a fluxion as 
a rate of change appeared to involve the concept of motion in mathematics; moreover, a fluxion 
seemed to be a different kind of object than the flowing quantity whose fluxion it was. For 
Leibniz, the differential quotient had been the quotient of vanishngly small differences; the 
second differential quotient, of even smaller differences. Bishop Berkeley, in his attack on the 
calculus, had made fun of these earlier concepts, calling vanishing increments "ghosts of departed 
quantities" [2, section 351. But since, for Lagrange, the derivative was a function, it was now the 
same sort of object as the original function. The second derivative is precisely the same sort of 
object as the first derivative; even the nth derivative is simply another function, defined as the 
coefficient of h in the Taylor series for f ( " ' ) ( x  + h). Lagrange's notation f l (x)  was designed 
precisely to make this point. 

We cannot fully accept Lagrange's definition of the derivative, since it assumes that every 
differentiable function is the sum of a Taylor series and thus has infinitely many derivatives. 
Nevertheless, that definition led Lagrange to a number of important properties of the derivative. 
He used his definition together with Euler's criterion for using truncated power series in 
approximations to give a mist useful characterization of the derivatiie of a function [9,p. 116, pp. 
118-1211: 

f ( x  + h )  =f ( x )  +hff(x) + hH, where H goes to zero with h 

(I call this the Lagrange property of the derivative.) Lagrange interpreted the phrase "H goes to 
zero with h" in terms of inequalities. That is, he wrote that, 

Given D,  h can be chosen so that f ( x  + h )  -f ( x )  
lies between h ( f l ( x ) - D )  a n d h ( f f ( x ) + D ) .  

Formula (6) is recognizably close to the modern delta-epsilon definition of the derivative. 
Lagrange used inequality (6) to prove theorems. For instance, he proved that a function with 

positive derivative on an interval is increasing there, and used that theorem to derive the Lagrange 
remainder of the Taylor series [9,pp. 122-1271, [ l l ,  pp. 78-85]. Furthermore, he said, considera- 
tions like inequality (6) are what make possible applications of the differential calculus to a whole 
range of problems in mechanics, in geometry, and, as we have described, the problem of maxima 
and minima (whch Lagrange solved using the Taylor series remainder whch bears his name [ l l ,  
pp. 233-2371), 

In Lagrange's 1797 work, then, the derivative is defined by its position in the Taylor series-a 
strange definition to us. But the derivative is also described as satisfying what we recognize as the 
appropriate delta-epsilon inequality, and Lagrange applied this inequality and its nth-order 
analogue, the Lagrange remainder, to solve problems about tangents, orders of contact between 
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P. Fermat R. Descartes I. Newton G.W. Leibniz 
I I 

1637-38 1669 1684 

Dates refer to these mathematician's major works which 

curves, and extrema. Here the derivative was clearly a function, rather than a ratio or a speed. 
Still, it is a lot to assume that a function has a Taylor series if one wants to define only one 

derivative. Further, Lagrange was wrong about the algebra of infinite series. As Cauchy pointed 
out in 1821, the algebra of finite quantities cannot automatically be extended to infinite processes. 
And, as Cauchy also pointed out, manipulating Taylor series is not foolproof. For instance, e -'/"' 
has a zero Taylor series about x = 0, but the function is not identically zero. For these reasons, 
Cauchy rejected Lagrange's definition of derivative and substituted his own. 

Definitions, rigor, and proofs 

Now we come to the last stage in our chronological list: definition. In 1823, Cauchy defined the 
derivative off ( x )  as the limit, when it exists, of the quotient of differences (f (x  + h) -f (x))/h as 
h goes to zero [4, pp. 22-23]. But Cauchy understood "limit" differently than had his predeces- 
sors. Cauchy entirely avoided the question of whether a variable ever reached its limit; he just 
didn't discuss it. Also, knowing an absolute value when he saw one, Cauchy followed Simon 
1'Huilier and S.-F. Lacroix in abandoning the restriction that variables never surpass their limits. 
Finally, though Cauchy, like Newton and d'Alembert before lum, gave his definition of limit in 
words, Cauchy's understanding of limit (most of the time, at least) was algebraic. By this, I mean 
that when Cauchy needed a limit property in a proof, he used the algebraic inequality-characteri- 
zation of limit. Cauchy's proof of the mean value theorem for derivatives illustrates this. First he 
proved a theorem which states: iff (x )  is continuous on [x,  x + a], then 

min f f ( x )  < f ( x + a ) - . f ( x )  < ,, f y X )  
[ x , x + a l  a l x , x + a l  

The first step in his proof is [4, p. 441: 

Let 6, E be two very small numbers; the first is chosen so that for all [absolute] values of h 
less than 6, and for any value of x [on the given interval], the ratio ( f ( x+ h )-f ( x ) ) / h  will 
always be greater than f l ( x )- E and less than f l ( x )+ E .  

(The notation in this quote is Cauchy's, except that I have substituted h for the i he used for the 
increment.) Assuming the intermediate-value theorem for continuous functions, which Cauchy 
had proved in 1821, the mean-value theorem is an easy corollary of (7) [4, pp. 44-45], [9, pp. 
168-1701. 

Cauchy took the inequality-characterization of the derivative from Lagrange (possibly via an 
1806 paper of A.-M. Ampere [9, pp. 127-1321). But Cauchy made that characterization into a 
definition of derivative. Cauchy also took from Lagrange the name derivative and the notation 
f'(x), emphasizing the functional nature of the derivative. And, as I have shown in detail 
elsewhere [9, chapter 51, Cauchy adapted and improved Lagrange's inequality proof-methods to 
prove results llke the mean-value theorem, proof-methods now justified by Cauchy's definition of 
derivative. 
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contributed to the evolution of the concept of the derivative. 

But of course, with the new and more rigorous definition, Cauchy went far beyond Lagrange. 
For instance, using his concept of limit to define the integral as the limit of sums, Cauchy made a 
good first approximation to a real proof of the Fundamental Theorem of Calculus [9, pp. 
171-1751, [4, pp. 122-125, 151-1521. And it was Cauchy who not only raised the question, but 
gave the first proof, of the existence of a solution to a differential equation [9, pp. 158-1591. 

After Cauchy, the calculus itself was viewed differently. It was seen as a rigorous subject, with 
good definitions and with theorems whose proofs were based on those definitions, rather than 
merely as a set of powerful methods. Not only did Cauchy's new rigor establish the earlier results 
on a firm foundation, but it also provided a framework for a wealth of new results, some of which 
could not even be formulated before Cauchy's work. 

Of course, Cauchy did not himself solve all the problems occasioned by his work. In particular, 
Cauchy's definition of the derivative suffers from one deficiency of whch he was unaware. Given 
an E ,  he chose a 6 whch he assumed would work for any x.That is, he assumed that the quotient 
of differences converged uniformly to its limit. It was not until the 1840's that G. G. Stokes, V. 
Seidel, K. Weierstrass, and Cauchy himself worked out the distinction between convergence and 
uniform convergence. After all, in order to make this distinction, one first needs a clear and 
algebraic understanding of what a limit is-the understanding Cauchy himself had provided. 

In the 1850's, Karl Weierstrass began to lecture at the University of Berlin. In his lectures, 
Weierstrass made algebraic inequalities replace words in theorems in analysis, and used his own 
clear distinction between pointwise and uniform convergence along with Cauchy's delta-epsilon 
techniques to present a systematic and thoroughly rigorous treatment of the calculus. Though 
Weierstrass did not publish his lectures, his students-H. A. Schwartz, G. Mittag-Leffler, E. 
Heine, S. Pincherle, Sonya Kowalevsky, Georg Cantor, to name a few-disseminated Weierstras-
sian rigor to the mathematical centers of Europe. Thus although our modem delta-epsilon 
definition of derivative cannot be quoted from the works of Weierstrass, it is in fact the work of 
Weierstrass [3, pp. 284-2871. The rigorous understanding brought to the concept of the derivative 
by Weierstrass is signaled by his publication in 1872 of an example of an everywhere continuous, 
nowhere differentiable function. This is a far cry from merely acknowledging that derivatives 
might not always exist, and the example shows a complete mastery of the concepts of derivative, 
limit, and existence of limit [3, p. 2851. 

Historical development versus textbook exposition 

The span of time from Fermat to Weierstrass is over two hundred years. How did the concept 
of derivative develop? Fermat implicitly used it; Newton and Liebniz discovered it; Taylor, Euler, 
Maclaurin developed it; Lagrange named and characterized it; and only at the end of this long 
period of development did Cauchy and Weierstrass define it. This is certainly a complete reversal 
of the usual order of textbook exposition in mathematics, where one starts with a definition, then 
explores some results, and only then suggests applications. 
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This point is important for the teacher of mathematics: the hstorical order of development of 
the derivative is the reverse of the usual order of textbook exposition. Knowing the history helps 
us as we teach about derivatives. We should put ourselves where mathematicians were before 
Fermat, and where our beginning students are now-back on the other side, before we had any 
concept of derivative, and also before we knew the many uses of derivatives. Seeing the historical 
origins of a concept helps motivate the concept, which we-along with Newton and Leibniz-want 
for the problems it helps to solve. Knowing the historical order also helps to motivate the rigorous 
definition-which we, like Cauchy and Weierstrass, want in order to justify the uses of the 
derivative, and to show precisely when derivatives exist and when they do not. We need to 
remember that the rigorous definition is often the end, rather than the beginning, of a subject. 

The real historical development of mathematics-the order of discovery-reveals the creative 
mathematician at work, and it is creation that makes doing mathematics so exciting. The order of 
exposition, on the other hand, is what gives mathematics its characteristic logical structure and its 
incomparable deductive certainty. Unfortunately, once the classic exposition has been given, the 
order of discovery is often forgotten. The task of the historian is to recapture the order of 
discovery: not as we think it might have been, not as we think it should have been, but as it really 
was. And this is the purpose of the story we have just told of the derivative from Fermat to 
Weierstrass. 

This article is based on a talk delivered at the Conference on the History of Modern Mathematics, Indiana 
Region of the Mathematical Association of America, Ball State University, April 1982; earlier versions were 
presented at the Southern California Section of the M. A. A. and at various mathematics colloquia. I thank the 
MATHEMATICS referees for their helpful suggestions. MAGAZINE 
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