REFERENCES

1. S. Abbott, Understanding Analysis, Springer-Verlag, New York, 2001.
2. G. A. Heuer, Functions continuous at the rationals and discontinuous at the irrationals, Amer. Math. Monthly, 72 (1965), 370-373.
3. J. E. Nymann, An application of diophantine approximation, Amer. Math. Monthly, 76 (1969), 668-671.
4. G. J. Porter, On the differentiability of a certain well-known function, Amer. Math. Monthly, 69 (1962), 142.

Math Bite: Convergence of p-series

We show the convergence of

$$
\sum_{k=1}^{\infty} \frac{1}{k^{p}}
$$

for $p>1$.
Let $p=1+q, q>0$. The sequence of partial sums, whose nth term is $S_{n}=$ $\sum_{k=1}^{n} 1 / k^{p}$, is monotone increasing. It is also bounded, as follows. Let $n=10^{j}-1$, then

$$
\begin{aligned}
\sum_{k=1}^{10^{j}-1} & \frac{1}{k^{p}}=1+\frac{1}{2^{p}}+\cdots+\frac{1}{k^{p}}+\cdots+\frac{1}{\left(10^{j}-1\right)^{p}} \\
& =\underbrace{1+\frac{1}{2^{p}}+\cdots+\frac{1}{9^{p}}}_{9 \text { terms }}+\underbrace{\frac{1}{10^{p}}+\frac{1}{11^{p}}+\cdots+\frac{1}{99^{p}}}_{90 \text { terms }}+\underbrace{\frac{1}{100^{p}}+\frac{1}{101^{p}}+\cdots+\frac{1}{999^{p}}}_{900 \text { terms }}+\cdots \\
& <1+\cdots+1+\frac{1}{10^{p}}+\cdots+\frac{1}{10^{p}}+\frac{1}{100^{p}}+\cdots+\frac{1}{100^{p}}+\cdots+\frac{1}{\left(10^{j-1}\right)^{p}} \\
& =9+\frac{90}{10^{p}}+\frac{900}{100^{p}}+\cdots=9\left(1+\frac{1}{10^{q}}+\frac{1}{10^{2 q}}+\cdots+\frac{1}{10^{(j-1) q}}\right)<\frac{9}{1-10^{-q}} .
\end{aligned}
$$

Readers may wish to adapt the argument to show divergence in the case where $p<1$. The first step is

$$
\begin{aligned}
& \sum_{k=1}^{10^{j}} \frac{1}{k^{p}}=1+\frac{1}{2^{p}}+\cdots+\frac{1}{n^{p}}+\cdots+\frac{1}{\left(10^{j}\right)^{p}} \\
& =1+\underbrace{\frac{1}{2^{p}}+\cdots+\frac{1}{10^{p}}}_{9 \text { terms }}+\underbrace{\frac{1}{11^{p}}+\frac{1}{12^{p}}+\cdots+\frac{1}{100^{p}}}_{90 \text { terms }}+\underbrace{\frac{1}{101^{p}}+\frac{1}{102^{p}}+\cdots+\frac{1}{1000^{p}}}_{900 \text { terms }}+\cdots \\
& >\frac{10}{10^{p}}+\frac{90}{100^{p}}+\frac{900}{1000^{p}}+\cdots .
\end{aligned}
$$

[Editor's note: Another manuscript received at about the same time, from Eugene Boman and Richard Brazier of Penn State University, Dubois Campus, presented this
same idea using powers of 2 . A referee pointed out that both methods amount to the Cauchy Condensation Test. See Konrad Knopp's classic books Infinite Sequences and Series or Theory and Application of Infinite Series.]

A Classification of Matrices of Finite Order over \mathbb{C}, \mathbb{R}, and \mathbb{Q}

REGINALD KOO
University of South Carolina Aiken
Aiken, SC 29801
regk@usca.edu

A matrix A is said to have finite order $n \geq 1$ if $A^{n}=I$ and $A^{r} \neq I$ for $1 \leq r<n$. Otherwise we say that A has infinite order. An elementary exercise in abstract algebra asks for 2×2 matrices A, B over \mathbb{R} each of finite order such that $A B$ has infinite order. The matrices

$$
A_{\theta}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \quad \text { and } \quad B_{\theta}=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]
$$

represent rotation about the origin through the signed angle θ and reflection in the line $y=x \tan (\theta / 2)$. The matrix A_{θ} has finite order if and only if θ is a rational multiple of 2π, whereas every matrix B_{θ} has order 2 . Moreover $A_{\theta} A_{\phi}=A_{\theta+\phi}, A_{\theta} B_{\phi}=B_{\theta+\phi}$, $B_{\phi} A_{\theta}=B_{\phi-\theta}$, and $B_{\theta} B_{\phi}=A_{\theta-\phi}$. Now let θ be an irrational multiple of 2π. Then the reflection matrices B_{θ} and B_{0} have finite order, and their product $B_{\theta} B_{0}=A_{\theta}$ has infinite order.

Are there examples other than reflections? To answer this it is natural to consider the matrices of finite order in $G L(2, \mathbb{R})$, the multiplicative group of nonsingular 2×2 matrices. The purpose of this note is to classify the matrices of finite order in $\operatorname{GL}(k, F)$ for the fields $F=\mathbb{C}, \mathbb{R}$, and \mathbb{Q}, and to provide further examples of finite order matrices whose product has infinite order. The solution to this classification problem involves the factorization of $x^{n}-1$ over F, and an application of the cyclic decomposition theorem of linear algebra. In this connection, we mention the paper [3] in which Robert Hanson determines, for a given n, the minimum k for which there is a $k \times k$ matrix A over F of order n, when F is \mathbb{C}, \mathbb{R}, or \mathbb{Q}.

Note that when F is a finite field with q elements then $G L(k, F)$ is a finite group of order $\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)[6$, p. 178], so that each $k \times k$ matrix over F has finite order.

Minimal polynomials The text Blyth \& Robertson [1] contains a concise account, with proofs, of the results of linear algebra stated here.

Having the same order (finite or infinite) is an equivalence relation in the multiplicative group $G L(k, F)$. We say that A is similar to B, denoted by $A \sim B$, if there exists a nonsingular matrix P such that $B=P^{-1} A P$. If A is similar to B, then A and B have the same order.

We denote the set of all $k \times k$ matrices over the field F, singular and nonsingular, by $M_{k}(F)$. If $A \in M_{k}(F)$ there is a polynomial $p \in F[x]$ for which $p(A)=0$. One such polynomial is the characteristic polynomial of A defined by $\chi_{A}(x)=\operatorname{det}(x I-A)$.

