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In elementary differential equations courses, the model of a (transversely) vibrat-
ing string is frequently used to motivate the one-dimensional wave equation and
Fourier series. For musically-inclined students, the motivation can be strengthened
by applying this model to techniques used by classical guitarists to vary tone
quality. This note describes two such applications. The first application (harmonics)
is well-known, eliciting nods of familiarity from guitar-playing students. The second
application (sol tasto and sol ponticello) is less well-known outside the specific
context of trained classical guitarists, but it is equally interesting, suggesting a
surprisingly simple mathematical explanation for the technique where it is not
immediately obvious that such an explanation exists.

The physical model of a string in the xy-plane, with ends fixed at the points (0, 0)
and (7,0), displaced to the shape of a curve y=f(x) at time =0 and then
released to move in the y-direction only (see Figure 1), gives rise to the boundary-
value problem

14
O =0, y(m =0, T =0, y(x0)=/(x),

where the constant a® is a parameter representing the ratio of the tension 7" along
the string to the linear mass density m of the string (see, for example, [1] for an
informal derivation of the equation from the physical situation). Bernoulli’s solution
of the above problem,

y(x,1) =Y a,sin(nx) cos(nat),

n=1

leads immediately to the idea of Fourier series. Setting ¢ = 0 in the solution suggests
that the shape of the string at time = 0 (assumed to be f{x)) can be written as a

(%, »(x,1))

Figure 1
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Fourier Sine series
f(x)= X a,sin(nx),
n=1
the coefficients @, of which can be found explicitly in terms of f(x):

2 .
a,= ;](; S(x) sin (nx) dx

(by a well-known method that relies on the orthonormality of the set {sin (7x)}; see
[1] for details).

Guitarists (and other string instrumentalists) obtain soft, high-pitched tones using
bharmonics. Harmonics are best understood by first considering that Bernoulli’s
solution allows for only certain “modes of vibration” of the string—namely, the
eigenfunctions sin(nx) for n=1,2,... . Several of these modes are shown in Figure
2. Musically, each mode corresponds to a specific pitch (vibrational frequency). The
mode for n =1 corresponds to the lowest pitch produced by the string, and is
called the fundamental. The other modes produce higher pitches, called overtones.
The fundamental and overtones are collectively referred to as partials. Typically, a
note produced by a musical instrument has the fundamental and a finite number of
overtones audibly present; the relative strengths of these pitches (or overione
pattern) are what give an instrument its characteristic tone or timbre. Variations in
tone are produced by manipulating the overtone pattern produced by the instru-
ment. Harmonics are one such variation. To produce a harmonic, a string instru-
mentalist gently touches (damps) the string at a point known to be a fixed zero
(“node”) for some (but not all) of the partials (i.e., at a point 7/n along a string of
length 7). Damping in this way removes all modes of vibration except those that
have a node at the point touched. The resulting tone sounds softer because it is
made up of fewer audible partials, and higher-pitched because the fundamental
is among the partials removed.

A
n=1 n=3
\M
Figure 2

Classical guitarists also obtain variations in tone by varying the (horizontal)
location at which the string is plucked. Specifically, plucking a string toward its
center (sol tasto or “near the fingerboard”) produces a soothing, mellow tone, and
plucking a string close to one end (sol ponticello or “near the bridge”) produces a
biting, strident tone. It is an interesting exercise to compute relative strengths of
partials as a function of plucking location. Such an analysis provides a plausible
explanation for the differences between sol tasto and sol ponticello tone quality.
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To perform the computations necessary for comparing relative strengths of
partials, we need to have a realistic idea of what the initial shape function f(x) is.
For plucked-string instrument (of which the guitar is an example), the possible
initial-shape functions can be modeled by the family

€
—X 0<x<a
o
Ja(x) = —€
(x—m) a<x<mw
T—

where € is a (small) constant representing the initial maximum vertical displace-
ment, and « is the horizontal location at which the string is plucked (so 0 < @ < 7)
(see Figure 3). The strength of the nth partial of a plucked string with initial shape
Jo(x) is measured by the magnitude |a,, ,| of the nth Fourier coefficient of f£,(x). It
is a short exercise using a computer algebra system (or a long but rewarding one by
hand, involving integration by parts and lots of algebraic simplification) to show
that

2¢€| sin(na)l

2 T
lan,a|=;!/0f(x(x)sin(nx)dx = (e a)

Using this surprisingly compact expression, we can plot the graph of |a,, ,|as a
function of & for n=1,2,...,8 (see Figure 4). The graph makes it obvious that the
higher overtones diminish in strength relative to the fundamental and lower over-
tones as a approaches /2 (sol tasto), and grow in relative strength as «
approaches 7 (sol ponticello). This suggests that the sol ponticello tone is more
biting simply because higher partials are more prevalent in the overtone pattern,
and the sol tasto is more mellow because the lower partials are more prevalent.

An interesting applied mathematical project would be to test the above model
empirically, using an actual guitar and sound analysis equipment sophisticated
enough to measure relative strengths of individual overtones produced when a
guitar string is plucked at various locations.

Figure 3
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la(n)] n =1 (fundamental)

sol tasto sol ponticello

Figure 4
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Fast-Food-Frusta and the Center of Gravity
Andrew Simoson (ajsimoso@king.edu), King College,
Bristol, TN 37620

The fast-food-service container for one’s favorite beverage also serves as a good
max-min problem for calculus classes studying the center of gravity, and one for
which the ensuing algebraic difficulties, nearly intractable by hand, can be easily
managed with a computer algebra system (CAS). For a given container, the problem
is to discover the liquid level for which the center of gravity is lowest. This level
exists because as liquid is poured into an empty cup, the liquid lowers the center of
gravity of the cup, but continuing to pour liquid into the cup eventually raises its
center of gravity.

First, let us consider a cup in the shape of a cylinder of radius 7, height H and
mass m. Using a coordinate system with origin at the center of the base of the cup
and vertical axis pointing upward, assume the center of gravity of the empty cup is

(0, h) with b > 0. Let y be the depth of a liquid of density § in the cup; then (0, %)

is the center of gravity of the liquid. We let (0, A »)) be the center of gravity of the
system—the cup together with its contents. See Figure la. This same problem
appears as a Soda Can Problem in both [1] and [2, p. 812].
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