The Factorial Triangle and Polynomial Sequences
Steven Schwartzman, Box 4351, Austin, TX 78765

In the March 1980 Classroom Capsules Column, Kenneth Kundert discusses
synthetic multiplication for

(a,x"+ a,_x" 7'+ - +ax + ag)(x + k).

Specifically:
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where the entries in the third row are the coefficients of the resulting (n + 1)st
degree product polynomial. As an application, Kundert illustrates how repeated
synthetic multiplication of (x + 1) by (x + 1) generates the binomial coefficients.
Thus, if the entries in the kth row of Pascal’s Triangle are recognized as the
coefficients of the polynomial (x + 1)¥, the first row being the Oth, then the entries
in the (k + 1)st row are the coefficients of the product (x + 1)* - (x + I).

We can extend this idea by introducing the following triangular array, calling it
the Factorial Triangle.

1
1 1
1 3 2
1 6 11 6
1 10 35 50 24
1 15 85 225 274 120
etc.

Students already familiar with Pascal’s Triangle usually enjoy the challenge of
trying to figure out this more complicated pattern and thereby generate some more
rows. Although some students have noticed that the numbers down the right side of
the triangle are the factorials of the row numbers (assuming again that the first row
is row 0), and others have noticed that (k + 1)! is the sum of the entries in row k,
the secret of the Factorial Triangle has eluded almost everyone: if row k represents
the coefficients of a polynomial, then row (k + 1) represents the coefficients of the
product when that polynomial is multiplied by [x + (k + 1)]. Thus, for example, the
entry 35 in row 4 results from multiplying the 6 in row 3 by 4 and adding the 11
next to it. This process of multiplying and adding the next number is perfectly
general, but the multiplier increases by 1 from each row to the next. If row 0
represents the coefficient of x, then row 1 represents the coefficients of x(x + 1);
row 2 represents the coefficients of x(x + 1)(x + 2); and so on.

This pattern is more than just a curiosity. It is related to finding the formula for a
generating polynomial when enough of its consecutive numerical values are given.
The method involves consecutive differences as illustrated:
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Beginning with the sequence a, a, a, a, -,

the first differences are b, b, by -,
the second differences are ¢ ¢, cee
and so on.

Upon closer examination of the a;, we see that
a, =a
a,=a; + b,
az=a,+by=(a,+b)+ (b +c)=a, +2b +c¢
ag=az+by=(a;+2b+c))+(by+c;)=a, +3b,+3c,+d,.

The pattern is now clear: a, is a sum of terms whose coefficients are the entries in
row n — 1 of Pascal’s Triangle. But it is well known that the ith entry in row k of
Pascal’s Triangle is given by

k(k— 1) k—=2) - (k—i+1
() - S 0

As a result, the formula for the general term of any sequence generated by a
polynomial is

a= ("3 ot ("7 e (73 e+ (75 e

b d
=a,(1)+T;-(n—1)+%(n2—3n+2)+3—;(n3—6n2+lln—6)+

At this point the role of the entries in the Factorial Triangle becomes apparent: the
coefficients of each polynomial factor are precisely the rows of the Factorial
Triangle, except that the plus and minus signs alternate.

As an example, consider the following sequence and its differences:

a, = 10 11 0 -29 —82
b, = 1 —11 ~29 —53 ...
0 = -12 - 18 —24 .-
d = -6 -6
0

Here a, = 10(1) + 1(n — 1) — %(n2—3n+2)— %(n3—6n2+ 11n —6), and,

upon simplification, we see that a, = — n> + 8n + 3 does indeed generate the initial
sequence for n =1,2,3,4,5.

The Factorial Triangle is curiously intertwined with Pascal’s Triangle. When
trying to find the polynomial formulas that generate each diagonal of Pascal’s
Triangle, one can apply the method of differences. It is surprising to see that a,, b,,
¢,, etc. (the first entries in the rows of differences) are nothing more than rows of
Pascal’s Triangle, though in retrospect it’s not hard to see why that must be so: it’s
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because each entry in Pascal’s Triangle is the sum of the two entries that “straddle”
it in the previous row, and so the process of taking successive differences starting on
a diagonal leads back to the appropriate row. The entries in the ith diagonal of
Pascal’s Triangle, then, are given by

k(k+1)(k+2)(k+3) - (k+i—1
_ k(e+ 1) )(i!) ( ) 2

Notice the striking similarity of equations (1) and (2): the only difference is that the
signs within each factor are reversed. If those factors are multiplied out for each
value of i, the coefficients of the resulting polynomials are the entries in the rows of
the Factorial Triangle.

d.

1

(k)

Editor's Note: Readers interested in a fuller exposition on sequences generated by polynomials may
enjoy Calvin Long’s article “Pascal’s Triangle, Difference Tables, and Arithmetic Sequences of Order n,”
CMJ 15 (September 1984) 290-298.

Finding Bounds for Definite Integrals
W. Vance Underhill, East Texas State University, Commerce, TX

Students in elementary calculus are often dismayed to learn that not every function
has an antiderivative, and consequently not every definite integral can be evaluated
by the Fundamental Theorem. Although most textbooks discuss such things as
Simpson’s Rule and the Trapezoid Rule, these methods are usually long and tedious
to apply. In many cases, reasonably good bounds for definite integrals can be
obtained with little effort by the use of well-known theorems. The fact that
techniques for doing this have never been discussed in one place is the motivation
for this note.

Except for very specialized and esoteric results, the following three theorems
provide methods for obtaining such bounds.

Theorem A. If f, g, and h are integrable and satisfy g(x) < f(x) < h(x) on the
interval [a, b], then

ng(X)dx <Lbf(x)dx <fabh(x)dx~

Theorem B. On the interval [a,b), suppose that f and g are integrable, g never
changes sign, and m < f(x) < M. Then

mfabg(x) dx <Lbf(x)g(x) ax < Mng(x) dx.

Theorem C. If f and g are integrable on [a,b], then

[ s dx< \/ [y ax \/ [P exyax .
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