CLASSROOM
CAPSULES

EDITOR

Frank Flanigan
Department of Mathematics and Computer Science

San Jose State University
San Jose, CA 95192

ASSISTANT EDITOR

Richard Pfiefer
San Jose State University

A Classroom Capsule is a short article that contains a new insight on a topic taught in the earlier years
of undergraduate mathematics. Please submit manuscripts prepared according to the guidelines on the
inside front cover to Frank Flanigan.

Fibonacci Numbers, Recursion, Complexity, and Induction Proofs
Elmer K. Hayashi, Wake Forest University, Winston-Salem, NC 27109

In this paper, we compare the complexities of three methods for computing the
nth Fibonacci number recursively. The methods are not new, see [1], but the
examples and proofs given are interesting, instructive, and probably unfamiliar to
many teachers and students. We give simple proofs of the complexity of all three
algorithms (if induction proofs can be called simple). Many books will warn
students not to use our first algorithm, and we provide a proof that shows why the
algorithm should not be used. Our second algorithm illustrates the use of binary
halving to improve the performance of an algorithm. Our third algorithm shows
how parameters may be used effectively with a recursive algorithm.
The Fibonacci sequence is defined as follows:

F,=1, F,=1, and F,=F,_,+F,_, foralln>2.

For each method that we describe, we will define a function f(n) that returns the
value F,. We will measure the complexity of the method by counting the number
of times f (or in the last algorithm, a second function g) must be called recursively
in order to compute F,.

The Fibonacci sequence grows exponentially. Note that F; =2 is twice as large as
F,=1,and F,=3is 1.5 times larger than F;. Now if you suppose that

F,_,215F,_,
and

F,_,>215"F,_5,
then

Fk—l +Fk_22 1'5.(Fk—2+Fk*3)

VOL. 23, NO. 5, NOVEMBER 1992 407

or
F,>15F,_,.

By induction, for all n > 2, we have

F,>15F

n = n—1 = (15)2 .Fn—Z =z (1'5)”—2 .FZ = (1‘5)"_2‘
Thus F, grows faster than the exponential function (1.5)" 2. The reader may wish
to prove that F, > (1.61)" 2 for all n, but F, > (1.62)" % does not hold for all n.

For a different approach, see [2].

A Method with exponential complexity. The first method for computing F,
merely uses the definition directly, and perhaps not surprisingly turns out to be the
slowest method.

function f(n)
if n=1o0r n=2 then
return 1
else if n > 2 then
return f(n — D+ f(n —2)
end if
end function

Note that if we call f(1) or f(2), then the function immediately returns 1. Thus
computing F, requires F, =1 function call, and computing F, requires F,=1
function call. If we call f(3), then the function returns f(2) + f(1), so f(2) and f(1)
must also be called. Thus computing F; requires 3 function calls. Since 3 > 2 = F;,
we conjecture that computing F, requires at least F, function calls. We have
already shown the conjecture is true for n=1, 2, and 3. We assume that
computing F),_, requires at least F,_, function calls, and that computing F,_,
requires at least F, _, function calls where k > 2. Then when we call f(k) it will
return f(k —1) + f(k — 2). Hence to compute F,, we call f(k) which in turn calls
f(k—1) and f(k —2). Using the induction hypothesis, this will require at least
1+F,_, +F,_,>F, calls. By mathematical induction, we conclude that for every
positive integer n, computing F, will take at least F, calls of the function f.
Applying the result in the previous section, it follows that the time to compute F,
grows exponentially with n. You may enjoy trying to find a formula for the exact
number of calls needed to compute F, by this method.

A Method with polynomial complexity. We can improve on the first method in
the same way that binary search improves on linear search. We first notice that we
can skip the computation of F, _, as follows

FnZEz—l +El—2= (F'1—2+E1—3) +Fn—2=2.E1—2+Fn—3'

Continuing the above process, we can skip the computation of F,_, by replacing
F,_, with F,_;+F,_,, and then skip F,_s, etc. By expressing F, in terms of
F Ln/2)+d> d= —1, 0, or, 1, we can substantially cut our work. We claim for n > 2
and 2 <k <n,

F,=FF, ot Fe F .

h—

408 THE COLLEGE MATHEMATICS JOURNAL

The proof for fixed n > 2 is by induction on k. We first note that F,=F,_, +
F, ,=F,-F,_,+F,-F,_,, ie. the result is true when k =2. Now suppose we
have

F,=F,F

It

w—i+1tF_yF,_, forsomek,
then
Fo=F (F,_y+F,_ 1) +F_ " F,_,
=(Fe+Fe_y) F_y+Fo F oy

=Fii By T Frrn-1" Fis ey

It follows by mathematical induction that the result is valid for all k£ for which all
subscripts are positive. Let k = |(n + 1) /2] be the greatest integer not exceeding
(n + 1)/2. Note that if n is even, then k =n —k, and if n is odd, then k =n —k + 1
and k—1=n—k.

We can now define our function f as follows:

function f(n)
if n=1o0r n=2 then
return 1
else if n > 2 then
k=[(n+1)/2]
if n is even then
return f(k)-(f(n —k+ 1D+ f(k—1))
else
return f(k)* + f(k —1)?
end if
end if
end function

As before, F; and F, require one call each to compute. Since F;=F}+ FZ,
computing F; will take 3 function calls, one to f(3), one to f(2), and one to f(1).
Similarly, computing F, =F, - (F;+ F,) will require 6 calls, and F,..., Fy will
require 5, 11, 10, 15, and 12 function calls, respectively. Examining the data
gathered so far, it is not hard to conjecture that the number of function calls
required to compute F, is bounded above by n? (the complexity is probably more
on the order of n'“ but I have not been able to prove this). In the proof, our
induction hypothesis requires that we assume the truth of our conjecture for all
k <n. Then if n is odd, F, is computed by calling f((n +1)/2) and f((n — 1)/2),
and hence by our induction hypothesis requires no more than 1+ ((n +1)/2)* +
((n—1)/2?*=(n*+3)/2<n? function calls when n>2. If n is even, F, is
computed by calling f(n/2), f((n+2)/2), and f((n —2)/2), hence computing F,
requires no more than 1+ (n/2)?+ ((n +2)/2)*+{(n —2)/2)*=3n%/4+3 <n?
function calls when n > 4. By induction, it follows that the computation of F,
never requires more than n? function calls. The same method of proof can be used
to show that F, can be computed with no more than O(n'>%) function calls since
1+(n/2)*+((n+2)/2)*+{(n—-2)/2)" <n* will hold for all large n if a>
log(3) /log(2).

VOL. 23, NO. 5, NOVEMBER 1992 409

A Method with linear complexity. The final method uses two parameters to
remember the last two Fibonacci numbers, and hence eliminates repetitive compu-
tation of the same Fibonacci number.

function f(n)
if n =1 then
return 1
else if n > 1 then
return g(1,1,n—1)
end if
end function

function g(a, b, n)
if n =1 then
return a
else
return g(a +b,a,n — 1)
end if
end function

Since each recursive call reduces the n parameter by 1, and a value is returned
when this parameter reaches 1, it is clear that a call to f results in n — 1 calls to g
and 1 call to f. It remains to be shown that F, is the value that is returned. If
n=1,then 1 =F, is returned by f. If n = 2, then f calls g with parameters 1, 1, 1,
and so 1 = F, is returned by g and hence by f. Note that in any first call to g, the
first two parameters are a = F, =1, and b = F, = 1. Now if we assume that on the
kth call of g, the first two parameters are a =F;,; and b =F;, then a=F,, is
returned if the third parameter is 1, and otherwise g is called again with the first
two parameters a +b=F, ,+F,=F, , and a=F,, ;. By induction, it follows
that F, will be returned after 1 call to f and n — 1 calls to g.

References

1. Giles Brassard and Paul Bratley, Algorithmics, Theory and Practice, Prentice-Hall, Englewood Cliffs,
NJ, 1968, pp. 16-18.
2. Udi Manbar, Introduction to Algorithms, Addison-Wesley, Reading, MA, 1989, pp. 46-50.

Distance from a Point to a Plane with a Variation
on the Pythagorean Theorem
Abdus Sattar Gazdar, University of New England, Armidale 2350 NSW Australia

In this capsule we give a short and direct derivation of the standard formula

|Aa + Bb + Cc + D|/VA*+ B? + C? (D
for the distance between a point P(a, b, ¢) and the plane LMN:

Ax+By +Cz+D=0. (2)

410 THE COLLEGE MATHEMATICS JOURNAL

