Combining the four cases, we obtain the probability distribution for this random

variable X:
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forn=11,12,....

Recall that the expected number of tosses required to earn the body and head is
12. Now we want to add to this the expected value of the probability distribution X
represented by (7). Thus, the expected number of tosses to build the entire cootie
is

<

12+ B(X) =12+ ) nP(X =
n=11

By tailoring a Mathematica program, we were able to calculate this value and found
it to be 48.953478 (with eight significant digits), consistent with the value obtained
in the simulations.

Minimal Pyramids

Michael Scott McClendon (mmcclend@lsue.edu), Louisiana State University, Eunice,
LA 70535

Here is a natural optimization problem that might be given to the better students of
a first-year calculus course. Some characteristics of its solution are mildly surprising.

Find the dimensions of the pyramid of minimum volume whose base is a regular n-gon
and whose base and triangular faces are all tangent to a fixed sphere.

Figure 1 shows a slice of the pyramid through the apex and perpendicular to an
edge of the base polygon. The radius of the inscribed sphere is r, the height of the
pyramid is h, and a is the apothem—the distance from the center to the midpoint
of a side of the base.

We wish to express the volume of the pyramid in terms of the constant r and the
variable A.

Using similar triangles, we have

r

e___ "
h h(h — 2r)
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Figure 1

SO

h—2r (1)

To express the area of the base of the pyramid in terms of h and r, let b be half the
length of a side of the base n-gon and let 23 = 27 /n be the central angle subtended
by a side of the base, as in Figure 2.

o>

Figure 2

Since tan 8 = b/a and 8 = 7/n, the area A of the base is 2n times the area of the
triangle in Figure 2. That is,

A =20 (o tan (1)) = na?tan (7). @
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Substituting (1) into (2), we arrive at

A= g (1),

The volume of any cone is given by %Ah, where h is its height and A is the area
of its base. Thus, the volume V' of our pyramid is given by
1 nr?h? ks
Ve=_Ah=-2" 4 (—)
3 3(h—2r) \%
Note that the domain of the function V(h) is the open interval 2r < h < 0o, and

the volume increases without bound as h approaches either endpoint of this interval.
To minimize V we set the derivative

v nr? 7w\ h(h —4r)
dan = 3 (n) (h— 2r)2
equal to zero and find that the minimum volume is attained when h = 4r. Somewhat
surprisingly, our answer is independent of the number n of sides in the base! Since
the minimizing condition h = 4r holds for any value of n, then by letting n go to
infinity it follows that the circular cone of minimum volume circumscribed about a
sphere of radius r will also have a height equal to 4r.

For an additional exercise, find the dimensions of the pyramid of minimum surface
area whose base is a regular n-gon and whose base and triangular faces are all
tangent to a fixed sphere.

Taylor Polynomials for Rational Functions
Mike O’Leary (oleary@cats.ucsc.edu), University of California, Santa Cruz, CA 95064

How would you calculate the third-order Taylor polynomial for

zt 4+ 2242
fl@) = —5——=
3+ x+1

at the origin? In the usual treatments of Taylor polynomials and Taylor’s theorem,
rational functions f(z) = P(z)/Q(x) for polynomials P and @ are largely ignored.
I imagine this is due to the difficulty of calculating higher-order derivatives of these
functions. Here is a way to calculate Taylor polynomials for rational functions that is
simple computationally and conceptually. Moreover, as a byproduct we will explicitly
calculate the remainders and show that they have a useful form. We can use these
explicitly calculated polynomials and associated remainders as concrete examples
and motivation for Taylor’s theorem.

To find the third-order Taylor polynomial for the above example at the origin,
we must first check that the denominator does not vanish at the origin. It does not,
so we can proceed with simple long division. For long division of polynomials, we
usually arrange the terms of both polynomials in order of decreasing degree, as in
the following computation:
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