the ellipse in .S onto the picture plane P is an ellipse. Thus, the question addressed
by this paper is answered in the affirmative.

o

What’s Significant about a Digit?
David A. Smith, Duke University, Durham, NC

The question of the title might well have been (but wasn’t) posed by a student
wondering about instructions to report numerical answers to, say, “four significant
digits.” (At Duke, we routinely give such instructions to our calculus students.) It
will come as no surprise that our freshmen enter with little or no idea as to what
makes a digit significant.

In spite of the fact that practically every standard calculus book assumes that
students will use calculators at least some of the time, you will look in vain for one
that defines significant digit. Small wonder then that students make quite arbitrary
decisions, reporting everything displayed on a calculator as a final answer, but
discarding digits to suit their convenience if an intermediate result must be copied
down and rekeyed.

What then are significant digits? A reliable source [The American Heritage
Dictionary of the English Language, New College Edition (W. Morris, ed.), Houghton
Mifflin, 1978] defines them as:

The digits of the decimal form of a number beginning with the leftmost
nonzero digit and extending to the right to include all digits warranted
by the accuracy of measuring devices used to obtain the number.

That definition, while clearly aimed at laboratory science applications, may be the
only one our students have seen in secondary school (if, indeed, they have seen any
definition at all). It’s actually a workable definition for a mathematics course, if we
expand “measuring” to “measuring and calculating.” It is still an intuitive defini-
tion, however, because of the imprecision of “warranted.”

The natural place to look for a mathematical definition of significant digit would
be in a numerical analysis book—indeed, it is the “creeping down” of topics from
numerical analysis into the calculus sequence that makes this topic important at this
time. But not even the authors of these books agree on the “correct” definition. On
page 5 of Anthony Ralston’s classic text [ 4 First Course in Numerical Analysis,
McGraw-Hill, 1965], we find:

If y is any approximation to a true value x, then the k-th decimal place
of y is said to be significant if

[x—y| <0.5 X107,
Therefore, every digit of a correctly rounded number is significant.

This definition works equally well for digits to the left or right of the decimal point
if we don’t require k to be positive; that is, if we allow the units place to correspond
to k=0, the tens place to k= —1, and so on. However, there is no mention of
“leading zeros,” and the author follows the definition with a paragraph to explain
how this leads to difficulty in determining when numbers are “equally significant.”
The paragraph ends, “We shall therefore avoid the use of the notion of the number
of significant digits in a number.”
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R. L. Burden and J. D. Faires’ more recent, and currently popular, text [ Numeri-
cal Analysis 3rd ed., Prindle, Weber, and Schmidt, 1985] eschews the “intuitive”
definition and substitutes one based on relative error. Except for notation (changed
to match that in Ralston’s text), we find on page 12:

A number y approximates a number x to ¢ significant digits if ¢ is the
largest nonnegative integer such that

[x =yl
| x]

One might question whether the multiplying factor should be “5” or “0.5,” but
the examples make it clear that “5” is what the authors intend. For example, the
definition implies that y gives a 4 SD approximation to x = 1000 if
999.5 <y < 1000.5. But wait! According to this definition, y gives a 4 SD approxi-
mation to x = 999 if 998.5005 < y < 999.4995. The presumed virtue in calling the
latter example 4 SD rather than 3 SD is that their concept of SD is “continuous” in
the sense that for fixed ¢, the endpoints of the interval in which y approximates x
to ¢ SD vary continuously with x. However, the price paid to achieve continuity, in
violation of intuition, seems too high. Essentially the same definition is given by
S. D. Conte and C. de Boor [Elementary Numerical Analysis: An Algorithmic
Approach, 3rd ed., McGraw-Hill, 1980, p. 10], but the authors immediately contra-
dict it with their examples. For instance, they state that 3 is a 1 SD approximation
to m, whereas the definition asserts that it is a 2 SD approximation.

The formal definition that underlies the usual intuitive approach to significant
digits is the following:

<5x107"

(a) Leading zeros are never significant.
(b) The kth decimal digit (reading from left to right) of an approximation y to
a number x is significant if it is not a leading zero, and

|x —y| <0.5X 107

(c) The approximation y to x has ¢ significant digits if the first ¢ of its nonzero
digits are significant in the sense defined in (b).

See, for example, G. Dahlquist and A. Bjorck’s Numerical Methods, Prentice Hall,
1974, p. 24.

The following examples will illustrate the application of this definition to the use
of a calculator.

Example 1. An eight-place calculator might display #/40 as 0.0785398, or as
.07853982, or as 7.8539816 x 102, depending on the way it uses its eight digits.
But (as can be seen from a more accurate solution), the first display has 6 SD, the
second has 7 SD, and the third has 8 SD, even though eight digits are being shown
in all cases. The 4 SD answer is 0.07854. It requires five decimal places, and it can
be obtained from any of the three displays shown.

Example 2. An eight digit display of 7'* is 93648.047. The 4 SD approximation is
93650. Trailing zeros are sometimes necessary even when they are not significant.

Example 3. An eight digit answer for 20013 /10006 is 2.0000999. The 4 SD answer
is 2.000, not 2, or even 2.0. Sometimes trailing zeros are significant, and they must
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be present to indicate the level of accuracy after rounding. (By the way, appearances
notwithstanding, 2.0001 is not the exact answer from this division; the next digit
after the three 9’s is 4.)

Example 4. Suppose you want a decimal approximation to 7 /2 . The best answer
available from an eight-place calculator is 2.2214415, and the 4 SD answer is 2.221.
Now suppose you had used 1.41 to approximate y2 and 3.14 to approximate 7. The
calculator would then show the result of the division as 2.2269504. This answer
contains 8 SD of the rational fraction 314/141, but it does not have even three
correct SD’s of the number you were looking for. Rounding to four places gives
2.227, which is off by 6 in the fourth digit; rounding to three places gives 2.23,
whereas the correct 3 SD answer is 2.22. Moral: In general, you cannot expect your
answer to contain more SD’s than your least accurate input, and it may contain
fewer. That is why you should not discard “extra” digits in an intermediate result.
Use your calculator’s memory as much as possible. If you must copy an inter-
mediate result and key it in again, copy and rekey all of it.

Example 5. When subtracting numbers that are close together, you can lose SD’s
very quickly. Suppose you subtract = from 355/113. The fraction is displayed as
3.1415929, and 7 is displayed as 3.1415927. When you subtract these numbers, your
display may show .00000027, or 2.667 X 10~7, or even 1.8 X 10~ ". (These rather
different looking answers all came from actual eight-place calculators.) How many
digits are significant in each of these answers?

The first seven SD’s of the two numbers we subtracted matched exactly; that is,
they cancelled in the subtraction. If we had done the calculation on paper, our
answer would have been .0000002, which couldn’t possibly have more than one
significant digit. As it turns out, even that one is wrong. Where did all those other
digits come from? If we had a 12-digit calculator, this is the way subtraction would
have appeared:

3.14159292035 — 3.14159265359 = .00000026676.

Thus, the first answer given had 2 SD, the second had 3 SD (not four), and the third
had none (even after rounding). We emphasize that all three answers came from
calculators that show eight digits; the differences were in “hidden digits,” and if you
don’t know how many of those your calculator has, you can’t count on them.

When the Duke Mathematics Department first discussed making “4 SD” the
standard requirement for numerical answers, there were objections along the follow-
ing lines: An answer such as 8(10y10 — 1)/27 is exact. Why should we settle for
9.073, which is only an approximation? The symbolic answer makes it easy to tell
whether the student got the right answer. An incorrect symbolic answer also can
reveal what the student did incorrectly.

Any response to the above objections should begin by noting that the symbolic
answer is both exact and essentially meaningless. The decimal answer is meaningful
to the student (as an order of magnitude for the quantity being computed) and even
potentially useful (as a computational step in solving an engineering or physics
problem). The decimal answer can also be related to estimation techniques for
checking the plausibility of the answer—something we ought to be teaching, but
often do not.

Symbolic answers may seem easier to check because we have been doing it for a
long time. We overlook the fact that there are infinitely many correct symbolic
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forms for a given answer. (Any large group of test-takers will discover at least a few
that hadn’t occurred to us.) There is essentially only one correct 4 SD answer— the
infinity of variations beyond that number of places don’t have to be checked! The
choice of “4” is arbitrary, but it is large enough to eliminate guessing, and it is small
enough to override differences among calculators or (in most cases) disastrous
cancellations.

Of course, we usually cannot tell how a student arrived at a wrong decimal
approximation. (Since it is in the nature of calculus problems that the student’s
resort to the calculator comes late in the computation, an incorrect symbolic result
is also probably close at hand.) However, it is possible that a somewhat less accurate
decimal approximation may result from greater understanding of mathematics than
that being tested. For example, a student required to calculate a definite integral,
but who cannot remember the appropriate antiderivative, might resort to the
trapezoidal rule, with enough steps to get 2 or 3 SD. This approach should be
rewarded, not penalized, since it demonstrates a better understanding of integration
than most of our students ever acquire.

Acknowledgements. The organization of this note was substantially improved by suggestions from
Warren Page and several referees, one of whom contributed two of the references. The examples are
drawn from a handout prepared for calculus students at Duke. A copy of the handout may be obtained
from the author on request.

Finding Rational Roots of Polynomials
Don Redmond, Southern Illinois University, Carbondale, IL

In “Synthetic Division Shortened” [TYCMJ 12 (November 1981) 334-336], Warren
Page and Leo Chosid gave a very useful necessary condition for a polynomial with
integral coefficients to have a rational root. In this capsule, we provide two
additional results designed to ease the work involved in finding rational roots of
polynomials with integer coefficients. Although both of these results are known,
neither seems to be readily available in the literature. The proofs given here are
quite simple.
Let us begin by stating the rational root theorem.

Theorem 1. Let f(x)=a,x"+a,_x" "'+ -+ +a;x +a, be a polynomial all of
whose coefficients are integers. If f(p/q) =0 for relatively prime integers p and q,
then pla, and q|a,,.

The procedure for finding the rational roots of the polynomial f(x) is to list all
possible rational numbers p/q such that p|a, and g|a,, and to see which, if any,
satisfy f(p/q) = 0. Of course, this task isn’t quite as arduous as it looks, since we
can use Descartes’ rule of signs and results on upper and lower bounds for the zeros
to eliminate the need to check every possibility. And those rationals that need to be
tested can be checked rather quickly by the Page-Chosid method alluded to above.
However, if a, and a, have many factors, there could still be many rational
numbers to check.

Our first result says that if certain conditions are fulfilled, then the polynomial
has no rational roots.

Theorem 2. Let f(x) be a polynomial of degree at least two defined as in Theorem 1.
If ay, a, and f(1) are all odd, then f(x) has no rational roots.
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