fn)
Figure 2. The Fibonacci walk for the sequence 1,3,4,7,1,8,9,7,6,3,9,2,1,3,....

The many questions to consider about the cycle lengths and orbit structures are
a fertile source of projects requiring students to formulate and test conjectures.

o

Cubic Splines from Simpson’s Rule
Nishan Krikorian and Mark Ramras, Northeastern University, Boston, MA 02155

Suppose at the points xg, x;,...,x, we are given data values ygy,y,,...,y, and
slopes g, ;5. .., 5,. Then a cubic Hermite interpolant is a C' piecewise cubic curve
y = C(x) that interpolates these data values and slopes. In other words, on the data
interval [x;, x;,;] C(x) is the unique cubic polynomial such that C(x,) =y,
C'(x)=s5;, C(x;41) =Y+, and C'(x;,,) =s,,;. It is easy to write down an explicit
formula for C(x) in each interval. Now suppose the slopes sg,s;,...,s, are not
given but are allowed to be chosen arbitrarily. It is a surprising fact that there is a
choice of sg,s,,...,s, that produces a cubic Hermite interpolant that is also C2.
Such an interpolant is called a cubic spline. It is shown in standard textbooks in
numerical analysis that, for this to happen, s, sy, ..., s, must satisfy the tridiagonal
linear system

(1 0 5o
hy 2(hy+hy) hy 51
h, 2(hy+hy)  hy )

h’n—l z(hn—Z +hn—1) hn—2 Sp-1

0 1 s,
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dy

hy hyo
-h—o(yl—yo) +',;(yz—y1)
h;, hy

h_l()’2 -y1) + h_z()’3 =¥3)
=3 (1)

hn—l hn—2
z:;(yn—l _yn—Z) + h_(yn _yn—l)

n-1

d, |

where h;=x;,; —x;. (To make the problem completely determined, we need
conditions at the boundary points. In (1) we have simply assigned the slopes s, and
s, to have the values d,, and d,,. This gives us what is called a complete cubic spline.
Other boundary conditions are possible, giving rise to other kinds of splines.) The
usual derivation of (1) is a tedious algebraic exercise. It is the point of this note to
show that there is an easy way to get it.

When we present this material in class, for simplicity we usually restrict the
discussion to the equally spaced case. Then (1) becomes

1 M ose | [ dy ]
1 4 1 51 Y2=Yo
1 4 1 s 31 y3—y
2 |2 sTh )
; h ;
1 4 1 Sp—1 Yn = Yn-2
sll dll
where h=hy=h, = -+ = h,_;. On more than one occasion students have noticed

that the coefficients 1,4,1 that appear in the matrix also appear in Simpson’s rule,
and they have naturally asked if there is a connection. It turns out that there is!

Consider the cubic spline C(x) on the double interval [x,, x,]. Then the
fundamental theorem of calculus says [*2C'(x)dx = C(x,) — C(xy) =y, —y,. If we
could use Simpson’s rule to compute the jntegral on the left exactly, we would
obtain

Sg+4s,+s
(%)2}1 =Y27" Yo (3)

which is the second equation in (2). All the other equations would follow in the
same way. Simpson’s rule is exact for cubics, but is it exact for the piecewise
quadratic C'(x)? A simple geometric argument shows that it is. Let Q(x) be the
quadratic polynomial that interpolates the data (xg,sg),(xy,s,),(x,,s,). Then,
since y = C(x) is assumed to be C%,C'(x)—Q(x) is a C! piecewise quadratic
polynomial that interpolates the equally spaced data (x,,0),(x;,0),(x,,0). It is
easy to show that its graph must look as in Figure 1, that is, C'(x) — Q(x) must be
antisymmetric around x,. We therefore have f;;z[C "(x) — O(x)]ldx=0 or
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C(x)

C'(x)-Q(x)

%o 1 2 “o x\/x'z

Figure 1

(xg: o)

[£2C"(x) dx = [F20Q(x) dx. Since Simpson’s rule is exact for the quadratlc O(x), we
obtain equation (3) and are done.

The argument above shows that if C(x) is a cubic sphne then its slopes must
satisfy (2). But for practical purposes, what we really want is the converse of this
result. The following argument uses the same idea as above but requires some
algebra. We will treat the general case since it does not present any additional
difficulties. For simplicity, shift x; to the origin so that the interval [x, x,]
becomes [ — A, k1. Since C'(x) is piecewise quadratic and passes through the points
(—h, 54,00, 5,),(k, s,), then almost by inspection we have

So+oh—s ’

(—O—hz—l)x2+o-x+s1 for x € [—h,0]
()= s;—0'k—s, 2 /

(T x2+o'x+s, forxe[0,k]

where o and o' are the derivatives of C'(x) at 0 from the left and from the right.
Our goal is to find what conditions insure that o= o '. If we integrate C'(x) over
the intervals [—#4,0] and [0, k] separately, we get the equations
so+oh—s \h h?
|3 T o sk =y,
SZ—O"k—Sl k3 ' ,kz
——'kz——— ? + o 7 +5,k=y,—y;.
Multiplying the first equation by k/h, and the second by 4 /k and adding, we get

kso +2(h +k)s, +hs, hk

k h
3 _76_(0'_0")=;(Y1_Yo)+z()’2—)’1)

which implies that o= ¢’ if and only if

k h
ksg+2(h +k)s; +hs, = 3%()’1 —Yo) + 3;(}’2 —Y1)-

This is exactly the second equation in (1). In this way, we see that (1) implies that a
cubic spline C(x) exists. '

So the observation that the coefficients in (2) are the same as the coefficients in
Simpson’s rule has inspired the idea of integrating the derivative of C(x), resulting
in a very simple proof that the existence of a cubic spline is equivalent to (1).
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