Recognizing that the limit as 4 goes to 0 of the term in the denominator is
precisely the definition of the derivative of e* at x = 0, we immediately conclude
that

b
fexdx=eb—e“.
a
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On Laplace’s Extension of the Buffon Needle Problem
Barry J. Arnow, Kean College of New Jersey, Union, NJ 07083

The classical Buffon needle problem is to find the probability that a needle of
length n» when dropped on a floor made of boards of width b will cross a crack
between the boards. This problem can be solved by evaluating a simple single
integral. In his extension of the problem, Laplace considered a floor tiled by
congruent rectangles and considered the probability of the needle crossing one or
two of the cracks between the rectangles. The problem of computing this probabil-
ity is given as an exercise in some references [2, 4, 13] the answer is merely stated
in others [1, 12], and is discussed in some detail by Solomon [11]. The only
reference we know of that provides an elementary presentation of the solution of
Laplace’s problem is in error [10], and it is the purpose of this note to provide a
complete and correct solution. In our solution, the universe of possible positions in
which the needle can fall is modeled on a three-dimensional coordinate system and
the problem is solved by some straightforward computations of double integrals.
We conclude with a brief survey of the many variations on the Buffon and Laplace
needle problems and we suggest some variants to pursue.

The original Buffon needle problem. 1In the diagram below a needle of length n is
depicted on a floor with boards of width b. The distance from the base of the
needle to the floorboard “above” the needle is denoted by y. The angle made by
the needle with the horizontal is denoted by 6. If we assume that n < b, then the
universe of positions in which the needle can fall is seen on the following graph
with the shaded portion representing the positions where the needle crosses a
crack. (The case where n > b is left for the reader.)

=
!
\b
1
N
0<y<b
0<b6<m
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Assuming a uniform probability distribution, the probability of the needle
crossing a crack is given by:

/2
fo nsin 6 do n

P=—m— = —.
bw/2 b

Laplace’s extension of the Buffon needle problem. Consider the following diagram
in which the needle is shown in a random position on a floor tiled by rectangles of
side lengths a and b. The distances from the base of the needle to the next
horizontal and vertical cracks are represented by y and x respectively, and 6 is the
angle the needle makes with the horizontal.

Y 6,' . i
0 —
0<x<a
0<y<b
0<b6<m

We assume that » is smaller than both a and b and we leave the other cases to the
reader. The possible positions of the needle for which § < /2 are shown on the
following graph in 3-space. If x <7 cos 6 so that 8 < arccos(x/n), we get a vertical
crossing. Thus the region enclosed by the surface 8 = arccos(x /n) and the XY-plane
for 0 <y <b represents those positions in which the needle crosses a vertical
crack. Similarly, the region bounded by @ = arcsin(y/n) and the ©®X-plane for
0 <x < a represents positions in which the needle crosses a horizontal crack. The
intersection of these two regions then represents positions in which the needle
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makes both a horizontal and vertical crossing. Once again we mean by randomness
that 6, x, and y have uniformly distributed probabilities within their respective
ranges. The probabilities of each of these three events can then be obtained by
evaluating the following expressions.

For a horizontal crossing,

[Pnsinododx
p, =20 =—.
h abw /2 b

By symmetry, for a vertical crossing, we obtain P, =2n/ma.

To compute the probability of crossing both horizontally and vertically we first
observe that the intersection curve of our surfaces projects down on a circle, that
is, arcsin(y /n) = arccos(x /n) implies y2 = n? — x2 Thus

/2 rncos@ rnsin@
dydxdo
A A
h and v ab77-/2
]:/2”2 sin 6 cos 6 d6 22 n?
abm/2 " abm/2  wab’

The probability of crossing either horizontally or vertically can now be computed
as the sum of the probabilities of each event minus the probability of both:

2n 2n n*  2n(a+b)—n?
Phoru =—+_ —- = .
am bm abmw mab

Note that as @ — «, we obtain the solution to the original Buffon needle problem.
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The probability of the needle falling entirely within one of the rectangles is then

mab —2n(a +b) +n?

Tab

l_Phorv=

One can simulate the Buffon needle experiment with a computer, and there are
many variations on the Buffon or Laplace needle problems that can be pursued as
calculus exercises or with the assistance of a computer. For example, instead of
parallel lines, one might try a collection of n lines through a single point with
uniform angular spacing between the lines [3]. One might consider other tilings of
the plane (see [6, 9]), say by hexagons rather than by rectangles. Another variation
is to bend the needle and keep the parallel lines. Surprisingly, Barbier [12] gave an
ingenious solution to the original Buffon needle problem by bending the needle
into a circle and computing the probability that the circle crosses one of the
parallel lines! Gnedenko [5] (also see [9]) showed that we obtain the same solution
if the needle is bent into any convex curve. Buffon’s Noodle Problem [7] is to find
the probability of crossing one of the parallels when tossing a wet noodle of fixed
length, but which randomly changes shape on each throw!

H. Solomon [11] also discusses higher dimensional analogues of these problems.
For example, how can the problem be framed if our needle is to be positioned in
euclidean m-space partitioned into parallel hyperplanes or into nonoverlappng
m-dimensional rectangles? The problem is then to find the probability that a
randomly placed vector with norm # lies entirely in one of the cells.
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Tangents to Conics, Eccentrically
Frederick Gass, Miami University, Oxford, OH 45056

Geometrical notions are abundant in calculus, where one learns how problems
involving them can be addressed via the derivative or integral. Interestingly, in the
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