After utilizing a standard trigonometric substitution, we see that, for 0 < 6 < 7/2,

|

while the case 0 = 7/2, corresponding to shooting the cannonball straight up, leads
to I(m/2)=0v%/g.
To compute the critical values, we take the derivative of Z(#) and find
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The critical value for 6 in (0, 7/2) is the angle 6, which satisfies

1+sin 6,

sin 0, In

1—sin 0,

At the endpoints of the interval [0, /2], we see that 1(0) = 0 and that L(sr/2) gives
a local minimum. Using a graphing calculator, or by Newton’s method, one easily
obtains 6, = .985514738... radians or about 56 degrees. It is interesting to notice
that this 6, which maximizes the arclength, lies strictly between the range-maximiz-
ing angle 7/4 and the height-maximizing angle /2.

Pictures Suggest How to Improve Elementary Numerical Integration
Keith Kendig (kendig@math.csuohiu.edu), Cleveland State University, Cleveland,
OH 44115

In a recent introductory numerical methods course, Maple helped students
discover some substantial improvements to the trapezoidal and Simpson’s methods.
Students had learned to do numerical integration using rectangles and trapezoids,
and were just starting to use Simpson’s formula.

N

B Figure 1

In Figure 1, the base is (¢ —a), and $(a+ 4B+ y) is an average altitude. The
formula comes from passing a parabolic arc passing through three points; this arc
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follows a function’s graph more closely than the line segment used in the rectangu-
lar or trapezoidal methods. After the class wrote a short computer program using
Simpson’s formula for approximating integrals, we tested it on [7x? dx. Students
found that the program gave the exact answer of 4, regardless of the number of
subdivisions. This struck a number of them as remarkable since Simpson’s formula
had been developed to be exact only for quadratics, not cubics.

Why does this happen? The graph of y=x> passes through (0,0), (1,1) and
(2,8), and the approximating parabola through these points is y = 3x* — 2x. As can
be seen in Figure 2, the parabola dips below the cubic from x=0 to 1, and rises
above it from x =1 to 2. Since Simpson’s formula gives the exact result, the area of
the vertically shaded region must be the same as the area of the horizontally shaded
region. Students found that an analogous thing happens for simultaneous plots over
other intervals and other cubics; through exploration, they stumbled upon one of
the great free lunches in mathematics: although Simpson’s formula is designed only
to integrate quadratics exactly, it in fact exactly integrates every cubic.

y (2,8)

Figure 2

1,1

Maple made the proof of this easy. By direct integration, the area over [, c] and
under the cubic

f(x)=Ax>+Bx*+ Cx+D
is
A B C
—(c'—a")+ = (—-a®) + =(c*—a*) +D(c—a).
4 3 2
Factoring out the base (¢ — a) leaves
A B c
Z((f +a’c+act+ %) + g(a2 +ac+c?)+ E(a+ ¢) + D,
which turns out to be the Simpson average altitude [ Aa) + 4/(a + ¢)/2) + f(c)].
Maple easily proves this: applying the simplify command to their difference gives
0. The error in Simpson-approximating any analytic function therefore comes from

terms of degree > 4; the extra, “free” level of accuracy has made this method a
perennial favorite.
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This suggested taking another look at the rectangular and trapezoidal methods.
Just as parabolic arcs are degree two approximations to a curve, the tops of
rectangles and trapezoids are degree zero and one approximations. Do these
likewise exactly integrate polynomials through one higher degree? For mid-point
rectangles, the answer is yes: the curve is a line, and the errors to the right and to
the left of the mid-point are the oppositely-signed areas of two congruent triangles,
which cancel.

For trapezoids, the answer is clearly no, since the trapezoidal method always over
estimates the area under any curve that is concave up, and under-estimates it for
any curve that is concave down. We finally decided to see if the trapezoidal method
could be improved.

Let us consider the parabola y=x? between a= —1 and c=1, shown in
Figure 3. The approximating trapezoid is a rectangle with upper vertices (—1,1) and
(1,1). Its area is 2, far larger than the area under the parabola, which is only 2.
Figure 3, however, suggests an idea: move the altitudes closer together until the
shaded areas cancel out. When does this occur?

In Figure 3, the base of the trapezoid is 2. The parabola intersects the top of the
trapezoid at (d, d*), so the altitude is d?, giving an area of 2d?. If we want this
to be equal to the area under the parabola, %, we take d= +1 /\/5 . Thus, moving
the bases of the altitudes so they're +1 /3 from the center exactly integrates the
quadratic in this case.

(-1, Y (1,1)

Figure 3

Remarkably, this works more generally. The exact area under g(x)=Ax*+
Bx+ C from x=a to x=c is the same as that of the trapezoid whose base is
(¢ —a) and whose top is determined by altitudes based at points pulled in by a
factor 1 /\/_3_ towards the center b= ((a + ¢)/2). This puts the altitude bases in our

improved method at
a+c 1 fa—c
(=) 5 15)
2 Va2

rather than at the standard endpoints

()]

(that is, @ and ¢).
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We can prove our claim much as we did before: first, direct integration shows
that the area under the parabola is

A B
g(c3 —-a’) + 5(02 —a*)+C(c—a),
and this factors into the base (¢ — @) times
A B
g(a2+ac+cz) + E(a+c) +C.

This last is the same as the average altitude of the trapezoid, which is

e 5 o225

Maple again easily verifies this—the simplify command shows that their difference
is 0.

Amazingly, this gives us yet another free lunch: the improved trapezoid method is
so much better that it actually integrates all cubics exactly! To see why, it's enough
to show that it does this for x*+ g(x), with g as above. But since our new
trapezoidal method integrates g exactly, we need only check that it does the same
for x3, giving $(c* — a*). Factoring out the trapezoid’s base (¢ — a) from this leaves

(@ + a*c+ac* + %),

this in turn is the average height

+_.
2 2 V3 2

1l{a+c 1 a—c)3

as Maple’s simplify once again shows.

How do these various integration methods compare in accuracy? We know that
for most problems, using midpoint rectangles is the least accurate, using trapezoids
is next, and Simpson’s formula is best. However, the improved trapezoid method
turns out to be even better than Simpson’s formula! It somehow doesn’t seem right
that a first-order method should be better than a second-order one. One attentive
student asked, “Since the trapezoid method can be improved so it exactly integrates
polynomials through degree three, can Simpson’s method be improved so it does
the same through degree four?” This question turned out to be the right one, and the
approach used before of symmetrically moving the altitude base points made this
look plausible, at least for y = x* (see Figure 4). The altitudes intersect the graph of
y=ux* in two points, and as these two points approach each other, the parabola
passing through them and (0, 0) flattens out, creating areas above and below y = x*.
Of course we’d like to get that particular parabola where the error-areas above and
below y = x* cancel out. Let the parabola be y = d?x?. Over the interval [—1, 1],
the area under y = d?x? is 2d*/3, and the area under y=x* is 2. If these areas

are equal, then d = y/ 2 . We might guess that, more generally, the outer altitudes in
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<

(1,6) Figure 4

X

an improved Simpson formula ought to be based at

( a+c ) 3 ( a—c )

+1 = .

2 5 2

With these altitudes, what would the improved Simpson’s formula be? The argument
is a nice classroom review of the one used to get the usual formula: substituting the
coordinates of any single point into the second-order equation y = Ax? + Bx + C
gives one linear equation in the variables A, B, C, so choosing three distinct points
on this parabola gives a system of three linear equations. Solving for 4, B, and C
then expresses these coefficients in terms of the three chosen points, and one can
substitute these into [f(Ax*+ Bx+ C)dx to get the area as Base X (Average
altitude). If the three points lie on the vertical lines through the two endpoints and
the midpoint of [a, c], we get the usual expression (1a+ 48+ 1y) /(1 + 4 + 1) for
average altitude. However, if the vertical lines through the endpoints are symmetri-
cally moved in by our factor of ﬁ (we continue to call these altitudes «, 8, and
v), then the average altitude is "

S5a+ 8B+ 5y
54+8+5
These average altitudes are always numerically identical. Example: if we take the
parabola y=x® over [—1,1], then the altitudes taken at x= —1,0,1 are
a=1, B=0, y=1, and the usual Simpson’s formula gives an average altitude of
((1-1+4-0+1-1)/6) = 3. If, however, the altitudes are chosen at x= — /2, 0,

ﬁ, then a=2, =0, y=2, and we get (52 +8-0+5-2)/18= 3. The im-
proved approximation to [¢f{x)dx is then (¢ — a)(5a + 8B + 5y)/18), where

a+c 3 (a—c a+c a+c 3 (a—c
f(z) 5(2)’Bf(2)’7f(2)+5(2)'
It turns out that this improvement not only integrates all polynomials through
degree 4, it even does it through degree 5!. (Once again, let Maple show that the
appropriate difference is 0.)

How good are these improvements? For most differentiable functions, the im-
proved version of Simpson’s method will add at least half again the number of
decimal places accuracy obtained from the usual Simpson version. Compared to the
usual trapezoid method, improved Simpson’s at least triples the number of accurate
decimal places.

o=
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It turned out that these were not new discoveries. We’d unexpectedly stumbled
upon two old results: the improved trapezoid and Simpson methods are actually
cases n =2 and 3 of Gaussian #n-point quadrature. (See [2], for example.) The zeros
of the Legendre polynomial of degree # lead to an n-point quadrature formula that
exactly integrates polynomials through degree 27 — 1. Our factors \/%7 and \/? are
zeros of Legendre polynomials of order 2 and 3; correspondingly, our formulas
work through degree 3 and 5. Tabulated solutions for 2 < n < 20 appear in [1] and,
through 7 =200, in [3]. Of course, this approach does not fit into a typical
beginning course.

Our experience showed that substantial improvements to the trapezoidal and
Simpson’s methods can be successfully introduced into a course for beginners,
using little more than pictures and Maple’s simplify command.
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Multiplying and Dividing Polynomials Using Geloxia
Jeff Suzuki (jeffs@bu.edu), College of General Studies, Boston University, Boston,
MA 02215

One popular method for multiplying numbers during the Renaissance was that of
“geloxia” or the grating [1, p. 209]. In this system the two numbers to be multiplied
were written in an “L” shape above a grid of squares divided by diagonals. In Figure
1 is shown the multiplication of 2375 by 127 to give the product 301625. The entry
in each square is the product of the two numbers at the top of the column and the

34| 6|4 0 Figure 1
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