If we now combine like terms, taking note of how each line is formed from the
previous, we have a pattern whose coefficients are those of the Pascal triangle:

Ve
Vn—l + An—l
Vn_z + 2An—2 + Ln—2

= Va-s + 3A,3 + 3L, + 1

= Vs +  4A,_4 + 6L,_4 + 4(1)
= Vies  +  S5A,_s + 10L,.s + 10(1)
== Vo + (7) Ay + (g) Lo + (;l) .

That is, we again have (2).

To generalize to (3), we note that just as a plane divides every volume it slices into
two smaller volumes, a hyperplane divides every m-dimensional region it partitions
into two smaller m-dimensional regions. If x; through x,, are the coordinates of our
m-dimensional space, then a hyperplane would have equation ayx; + ax; + - - - +
amXm = k. Without loss of generality, we assume that the nth hyperplane has equation
X, = 0 and that all points of intersection of any m of the first n — 1 hyperplanes have
Xm > 0. Then following the reasoning behind (4), each of the S,,_; ,_; m-dimensional
subspaces that intersect x,, = 0 are cut by it into two parts. Thus,

Sm‘n = Sm‘n—l + Sm—l,n—l (6)

and corresponding Pascal triangles will again produce (3). (For the earliest reference,
see [6]; for other presentations, see [3, 4]).
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Image Reconstruction in Linear Algebra
Andrzej Kedzierawski (kedziera@geneseo.edu) and Olympia Nicodemi
(nicodemi@geneseo.edu), SUNY Geneseo, Geneseo, NY 14454

Recently, inspired by [1], we have been using one and two dimensional image re-
construction problems in our introductory course in linear algebra to motivate and
illustrate various topics. We suppose that real world scenes are in “black and white”
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and that they come to us pre-digitalized as an array of pixels. Our hypothetical cam-
era photographs a scene (an array) by matrix multiplication using a known matrix C.
It transforms the original scene somewhat, perhaps blurring some of the details. Our
main task is an inverse problem: to try to reconstruct the original scene from the photo-
graph. The key to the classroom success of this application is a set of Maple programs
we developed to produce visual images from digital data stored in arrays. These pro-
grams are available from the authors by e-mail.

We begin with a one-dimensional scene that is a row of pixels represented by a
vector. Entries less than or equal to —1 appear black, entries greater than or equal
to +1 appear white, with shades of gray in between. For instance, the vector x =
[-1,-.7,—-.5,-.3,—.1,0, 1, 1] has eight pixels that change gradually from black to
gray and abruptly to white. (See Figure 1a.) A simple scanning camera moving across
the row might receive light from three adjacent pixels and average those values, thus
blurring and smoothing the image. Under this assumption, the resulting camera image
y is easy to calculate by y; = %(xi_l + x; 4+ x;41). Note that y has two pixels fewer
than the original scene.

(a)

(b)

(©

(d)

Figure 1.

Multiplying the vector x € R™ that records our original scene by the (m —2) x m
matrix

1 1 1 O 0
110 11 1 0
C=-{0 0 1 1 0
0 0 0 O 1
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models this blurring effect. The camera image y = Cx that results from “photograph-
ing” the scene in Figure la with the camera modeled by the matrix C is printed in
Figure 1b.

If z is a second scene, computing C(x + z) results in a “double exposure.” The
results are particularly surprising visually when z is in the null space of C. Ba-
sis vectors for the null space of C are nT =1[0,1,-1,0,1,—1,...] and nl =
[1,0,—1,1,0,—1,...]. The scenes they represent are printed in Figure 2. They
have very high local contrast (pixel to pixel oscillation) but any three consecutive
pixels average to zero. The camera photographs them as uniform gray. Adding linear
combinations of the null vectors to the original scene can change it dramatically but
the camera image is unchanged. The scene in Figure 1c is obtained from the vec-
tor v = x + n; + n,. But its photograph, C(v) = C(x) = y, is again the image in
Figure 1b.

Figure 2.

Now, starting with the camera image y taken by our blurring camera C, we want to
determine a reconstruction x, of the original scene x. To solve the reconstruction prob-
lem (an inverse problem) we need to choose one solution from the infinitely many so-
lutions to Cx = y. To do this, we must make some a priori assumptions about the prop-
erties of the reconstructed solution x,. There are many reasonable strategies. (See [1].)
To stay within the purview of elementary linear algebra, we choose the reconstructed
solution x, to be the (unique) vector that both solves the equation y = Cx, and is or-
thogonal to the null space of C. The choice seems reasonable for our simple blurring
camera C: the reconstructed scene has no contribution from the visually noisy null
vectors. The following is a simple procedure for solving the inverse problem. The so-
lution x, is orthogonal to the null space of C and therefore perpendicular to the basis
vectors n; and n,. Hence, x, is the unique solution of the system:

9 y
nl | |x =10
0

T
n,

The scene printed in Figure 1d is the reconstruction obtained by letting y be the vector
illustrated in Figure 1b and solving the above system for x,.

We would obtain the same reconstruction x, if we solved Cx = y for the solu-
tion of minimal Euclidean norm. In each case, x, is the projection of any particular
solution x,, into the row space of C. In the context of least-square problems, linear
algebra texts commonly introduce a matrix algebra approach to the column space
projection problem: To find the solution x, that minimizes ||Ax — b| for an over-
determined system Ax = b where A has full rank, multiply b by the pseudo-inverse
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of A so that xo = (ATA)"'ATb. The projection of b into the column space of A
is Axo. (See [3].) Students seldom see the counterpart for an underdetermined sys-
tem Cx = y: To project a particular solution x, of Cx = y into the row space of C
where C has full rank, let A = C” and project x,, into the column space of A so that
x, = A(ATA)"'ATx,. Since AT = Cand Cx, = y, we have x, = CT(CCT)"'y. The
matrix CT(CCT)~! is the generalized inverse of C. We denote it by C* (cf. [2]). Our
reconstruction procedure reduces to x, = C* y.

Next we step up to two-dimensional scenes with the pixel values now recorded in
m X n arrays. Imagine that we use a simple camera that receives and averages the
pixel values of a square of four adjacent pixels. The photograph of an m x n scene
stored in matrix A is stored in the (m — 1) x (n — 1) matrix B where b; ; = i(ai, i+
Qiy1,j + 0i j+1 + Giy1 j+1). (See Figure 3.) A student might discover the following line
of reasoning to produce a matrix C so that B = C A. Regard the original m x n scene
as an mn X 1 column vector x whose entries are the transpose of the first row of A,
followed by the transpose of the second row of A, etc.. Construct the (n — 1) x n
matrix M and the (m — 1) x m matrix S as follows:

1 1 0 - 0 1 1 0 - 0
1
M= |0 L N s 0 0

0 0 0 - 1 0 0 0 - 1

The camera matrix is the (n — 1)(m — 1) x nm partitioned matrix

M M 0 --- 0
c=|0 MM -0
0 0 o ... M

obtained by replacing the 1’s in S by the matrix M and the zeros in S by the (n — 1) x n
zero matrix 0. The camera image, y = C x, is an (m — 1)(n — 1) x 1 vector that can
be rearranged into an (m — 1) x (n — 1) array B.

The task of finding C* can be reduced to finding the generalized inverses of smaller
matrices M and S. In general, suppose that S = (s;;) and M are matrices of full rank
with more columns than rows. Let P be the partitioned matrix

suM  spM - s M
p= soayM sy M e SopM
- e SijM ..
If S* = (g;;) is the generalized inverse of S and M* is the generalized inverse of M,
then:

guM*t goM* ... g,M*
guMt gpMt - g, MT
e gijM+ .

Pt =

In the case that M, S and C are

11000 11000
1{o1 100 01100
M=21001 100" S=|loo11 0l
0001 1 0001 1
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(a)

(b)

(©

Figure 3.

132 © THE MATHEMATICAL ASSOCIATION OF AMERICA



M

0
C=O
0

we have § = 4M and M+ = 457 reducing the problem still further. Thus

4 -3 2 —1 4M* —3M*T 2Mt —M*
o3 2 L|omMro3mr oM M
St=-|-1 2 2 —1| and Ct==|-M+ 2M* 2M+ —M*+
1 =2 3 1 S| oM+ —am+ 3mMt Mt

-1 2 -3 4 Mt 2Mt —3M*  AM*

We used C* to find the reconstructed image in Figure 3c.

We graduate to a 31 x 31 image in Figure 4. The camera matrix C is 900 x 961
but to compute C*, we needed only to calculate the generalized inverse of a 30 x 31
matrix.

How do we store and process data for much larger scenes? How can we reasonably
overlap scenes? The topics introduced here provoke many questions that can spark and
sustain productive student research.
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It's About Time!
From the Greencastle (Indiana) Banner-Graphic, November 17, 2000, page 16A:

Indiana State Police
cracking down on
math lab operations
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(b)

(©

Figure 4.
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