where D = diag(1, 2, ..., n). The answer is

$$f(x) = n! \left(1 + x \sum_{k=1}^{n} \frac{1}{k} \right).$$

The characteristic polynomial. The formula (1) can be directly applied to the characteristic matrix $\lambda I_n - B$ by replacing A by λI_n and B by -B. Since $\det(I_n[\alpha|\beta])$ is 0 for $\alpha \neq \beta$ and is 1 for $\alpha = \beta$, we have

$$\det(\lambda I_n - B) = \sum_{r=0}^n \sum_{\alpha} \lambda^r \det(-B(\alpha|\alpha))^r$$

$$= \sum_{r=0}^n \lambda^r (-1)^{n-r} b_{n-r}$$
(19)

where b_{n-r} is the sum of all (n-r)-square principal subdeterminants of B. If $\lambda_1, \ldots, \lambda_n$ are the characteristic roots of B then

$$\det(\lambda I_n - B) = \prod_{i=1}^n (\lambda - \lambda_i)$$

$$= \sum_{r=0}^n \lambda^r (-1)^{n-r} e_{n-r}$$
(20)

where e_k is the kth elementary symmetric polynomial in $\lambda_1, \ldots, \lambda_n$. Matching coefficients in (19) and (20) we have

$$e_k = b_k, \qquad k = 1, \dots, n.$$

Of course, k = 1 and k = n are the familiar

$$\operatorname{tr}(B) = \sum_{i=1}^{n} \lambda_{i},$$

and

$$\det(B) = \prod_{i=1}^{n} \lambda_{i}.$$

Acknowledgment. This work was supported by the Air Force Office of Scientific Research under grant AFOSR-88-0175.

On 'Uniformly Filled' Determinants

Carsten Thomassen and Herbert S. Wilf, University of Pennsylvania, Philadelphia, PA

Let U be a square matrix of order n, and let v be any number. Let $V = (u_{ij} + v)_{i, j=1}^n$ be the matrix obtained from U by adding v to each entry of U. In the classroom capsule [1] it was observed that

$$\det V = \det U + v \cdot \sum_{i, j=1}^{n} Cof(U)_{ij}, \tag{1}$$

where Cof(U) is the matrix of cofactors of U. The author then applied this result to three examples where U was diagonal.

First, we would like to comment that if U is diagonal the formula can be considerably simplified (thereby responding to the challenge offered by the author at the end of [1]). We claim that if $D = \text{diag}(d_1, \ldots, d_n)$, then

$$\det(D+vE) = \left\{1+v\sum_{j=1}^{n}\frac{1}{d_{j}}\right\}(d_{1}d_{2}\cdots d_{n}), \tag{2}$$

where E is the $n \times n$ matrix of all 1's. (If, say, $d_r = 0$, the right side of (2) reduces to $v(d_1 \cdots d_{r-1}d_{r+1} \cdots d_n)$.)

The three matrices that the author used as examples were all special cases of this formula, at least after multiplying by suitable ± 1 's to deal with the fact that those examples used non-principal diagonals.

If we compare (1) and (2), we see that to prove (2) we need only check that the sum of the cofactors of a *diagonal matrix* D is as shown in the second term on the right of (2), which is obvious, since the off-diagonal cofactors all vanish, and the other cofactors are as shown.

Second, we briefly note a generalization of these ideas. Sherman and Morrison [2] observed that if A^{-1} is known, and if we now modify A by adding a matrix of rank 1 to it, then there is no need to recompute A^{-1} from the beginning, because the new inverse is

$$(A + \alpha \beta^{T})^{-1} = A^{-1} - (A^{-1}\alpha)(\beta^{T}A^{-1})/(1 + \beta^{T}A^{-1}\alpha)$$

where α and β are column vectors (this formula is easy to verify simply by multiplying the right side by $A + \alpha \beta^{T}$ and noting that the identity matrix results).

We remark that a similar formula applies to the determinant of the modified matrix. We claim that the relation

$$\det(U + \alpha \beta^{\mathrm{T}}) = \det U + \beta^{\mathrm{T}} Cof(U) \alpha \tag{3}$$

holds, for every square matrix U and every pair of column vectors α , β .

Indeed, since the determinant is linear, considered as a function of each of its columns, $\det(U+V)$ can be written as a sum of 2^n determinants, each having taken some of its columns from U and the others from V. If V has rank 1, i.e., is of the form $\alpha\beta^T$, then we need consider only those terms in which one or none of the columns are from V, because if two or more columns come from V the determinant will vanish since those two columns will be proportional.

If, say, the jth column is from V (and the others from U) then an expansion by minors down that column gives

$$\sum_{i} \alpha_{i} \beta_{j} Cof(U)_{ij}.$$

If we sum over j, and add in the one term where no columns of V are used, we obtain (3).

There are some interesting special cases.

1°. If U is nonsingular we can write (3) in the form

$$\det (U + \alpha \beta^T) = (1 + \alpha^T U^{-1} \beta) \det U. \tag{4}$$

 2° . If in (4) we let U = I, we obtain

$$\det(I + \alpha \beta^T) = 1 + \beta^T \alpha. \tag{5}$$

If we read (5) from right to left, we see an interesting representation of the dot product of two vectors in terms of a determinant.

3°. Finally, in (5) let $\alpha = Ax$, $\beta = x$, where A is a real symmetric matrix and x is a vector. The result is

$$x^{T}Ax = \det\left(I + Axx^{T}\right) - 1,\tag{6}$$

which shows that every quadratic form in n variables can be represented as a determinant in a simple way.

References

- Simon M. Goberstein, Evaluating 'uniformly filled' determinants, The College Mathematics Journal 19 (1988) 343-345.
- 2. J. Sherman and W. J. Morrison, Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix, *Ann. Math. Stat* 20 (1949) 621.

_____0___

Math in the Social Sciences

At last we see clearly, what mathematicians have claimed for a long time, without being able to present rational grounds, that the differential-quotient is the original, the differentials, dz and dy are derived: The thing has taken such a hold of me that it not only goes round my head all day, but last week in a dream I gave a chap my shirtbuttons to differentiate, and he ran off with them.

Friedrich Engels, letter to Karl Marx, August 10, 1881 quoted in Mathematical Manuscripts of Karl Marx, 1983, New Park