Binomials to Binomials
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The familiar binomial theorem expands (& + b)" into a series involving 7 + 1
terms.

a+b)'= Y |"]a" ko,
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The result may then be reduced to the form of a binomial once again, in examples
such as
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. =38+17/5 and (2+1)°= —117 + 44i.

When the binomial theorem is used to evaluate this last example, first seven terms
are calculated, then the four real numbers are added to get —117 and finally the
three imaginary numbers are added to get 44 1. In general we write (a + b)" =a,, +

- — ny n—kpk _ ny n—kpk :
b,, where a, =X, m,,,(k)a b*and b, =X, O(,d(k)a b*. We are looking for a

way to recursively generate the terms of these “a and b sequences”. Note that
(a+b)°=a,+by,=1+0 and (a+b'=a, +b,=a+b so {a,)=
{1,a,a,,a,,...} and {b,} ={0, b, b,, b5, ...}.

We will describe our method for generating successive terms of the @ and b
sequences, and then show why it works. Suppose you are given the numbers a and
b. Calculate the values C=2a, and D= b}2 — a?*. Now successive values of the a
and b sequences can be calculated from the recursion relations

a,=cCa,_, +Da,_, and b,=Cb, ,+Db,_,. (1)
To justify (1) we first observe that
a,=3((a+b)"+(a-0b)") and b,=3((a+b)"—(a-b)").
This is so because (— b)¢?¢" = b¥¢" while (—b)°?4 = —b°9? Now
(a+b)' =(a+b)(a+b)' *=(a>+2ab+b*)(a+b)"*
=(2a* +2ab+ b*—a*)(a+b)"’
=(2a(a+b)+ (b*—a*))(a+b)"*
=2a(a+b)""" + (V> —a®)(a+b)"">.
In the notation of the @ and b sequences, it follows that

ﬂ” + bn = 2“( an—l + bn—l) + (bz - dz)(dn—z + bn—z)
= C(an—l + bn—l) + D( “n—z + bn—Z)
= (Can—l +D6l”_2) + (Cbn—l +Dbn—2)'

In exactly the same way,
du - bn = (Can—l + D6l”_2) - (Cbn—l + Dbn—z)'

Solving for a,, and b, gives (1).
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For example, let us evaluate (2+1)°. Here a=2 and b=1i So C=4 and
D= —5. Now the recursion relations (1) are

n—1 = bn'

-5a,_, t4a,_,=a, and —5b,_,+4b

Since the first two terms of the a sequence are 1 and 2, the next is found to be 3
from the recursion relation. The first two terms of the b sequence are 0 and 4, so the
next term is 4. Continuing in this way we get further terms of the sequences:

n=20 1 2 3 4 5 6
a,=1 2 3 2 -7 —38 —117
b,=0 i 4i 114 24i 414 44i

Thus we have all the powers of 2 + i up to the sixth calculated in succession and

(2+1)° = —117 + 441

Notice that the real and imaginary parts are calculated independently. If we only
need the real part of (2+i)° we can ignore the calculation of the b sequence
completely.

5

9
For another example we show that ( % + 75) =38+ 17Y5. Here a=1/2 and

b=15 /2. (a+ b is the golden section.) So 2a=C=1 and b®>—a?=D=1. The
recursion relations are particularly nice, being the same as for the Fibonacci
sequence:

an—z + an—l = ﬂ” and bn—z + bn—l = bn'

The first two terms of the a sequence are 1 and 1/2, so the next is 3 /2. The first
two terms of the b sequence are 0 and Vs /2 so the next is Vs /2. The following
terms of the sequences are

n= 1 2 3 4 5 6 7 8 9
a,=1 1/2 3/2 2 7/2 11/2 9 29/2 47/2 38
Vs s 35 55 135 21/s
by=0 — 5 e e S == —— s

We have easily calculated all the powers of the golden section up to the ninth.

The reader may have observed that both of our examples are of the following
type: Let F be a field and let d € F be chosen so that Vd € F. If a and B are
elements of F and 7 is a positive integer, we want to express (a + 8Vd )" in the
form e, + B,Vd , where a, and B, are in F. Our method applies in all such cases,
producing the sequences a, = a, and b, = B,Vd .

212 ©THE MATHEMATICAL ASSOCIATION OF AMERICA



