Binomials to Binomials

Thomas J. Osler (osler@rowan.edu), Rowan University, Glassboro, NJ 08028

The familiar binomial theorem expands $(a + b)^n$ into a series involving n + 1 terms.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

The result may then be reduced to the form of a binomial once again, in examples such as

$$\left(\frac{1}{2} + \frac{\sqrt{5}}{2}\right)^9 = 38 + 17\sqrt{5}$$
 and $(2+i)^6 = -117 + 44i$.

When the binomial theorem is used to evaluate this last example, first seven terms are calculated, then the four real numbers are added to get -117 and finally the three imaginary numbers are added to get 44i. In general we write $(a+b)^n = a_n + b_n$, where $a_n = \sum_{k \ even} \binom{n}{k} a^{n-k} b^k$ and $b_n = \sum_{k \ odd} \binom{n}{k} a^{n-k} b^k$. We are looking for a way to recursively generate the terms of these "a and b sequences". Note that $(a+b)^0 = a_0 + b_0 = 1 + 0$ and $(a+b)^1 = a_1 + b_1 = a + b$ so $\{a_n\} = \{1, a, a_2, a_3, \ldots\}$ and $\{b_n\} = \{0, b, b_2, b_3, \ldots\}$.

We will describe our method for generating successive terms of the a and b sequences, and then show why it works. Suppose you are given the numbers a and b. Calculate the values C = 2a, and $D = b^2 - a^2$. Now successive values of the a and b sequences can be calculated from the recursion relations

$$a_n = Ca_{n-1} + Da_{n-2}$$
 and $b_n = Cb_{n-1} + Db_{n-2}$. (1)

To justify (1) we first observe that

$$a_n = \frac{1}{2}((a+b)^n + (a-b)^n)$$
 and $b_n = \frac{1}{2}((a+b)^n - (a-b)^n)$.

This is so because $(-b)^{even} = b^{even}$, while $(-b)^{odd} = -b^{odd}$. Now

$$(a+b)^{n} = (a+b)^{2}(a+b)^{n-2} = (a^{2}+2ab+b^{2})(a+b)^{n-2}$$

$$= (2a^{2}+2ab+b^{2}-a^{2})(a+b)^{n-2}$$

$$= (2a(a+b)+(b^{2}-a^{2}))(a+b)^{n-2}$$

$$= 2a(a+b)^{n-1}+(b^{2}-a^{2})(a+b)^{n-2}.$$

In the notation of the a and b sequences, it follows that

$$a_n + b_n = 2a(a_{n-1} + b_{n-1}) + (b^2 - a^2)(a_{n-2} + b_{n-2})$$

= $C(a_{n-1} + b_{n-1}) + D(a_{n-2} + b_{n-2})$
= $(Ca_{n-1} + Da_{n-2}) + (Cb_{n-1} + Db_{n-2}).$

In exactly the same way,

$$a_n - b_n = (Ca_{n-1} + Da_{n-2}) - (Cb_{n-1} + Db_{n-2}).$$

Solving for a_n and b_n gives (1).

For example, let us evaluate $(2+i)^6$. Here a=2 and b=i. So C=4 and D=-5. Now the recursion relations (1) are

$$-5a_{n-2} + 4a_{n-1} = a_n$$
 and $-5b_{n-2} + 4b_{n-1} = b_n$.

Since the first two terms of the a sequence are 1 and 2, the next is found to be 3 from the recursion relation. The first two terms of the b sequence are 0 and i, so the next term is 4i. Continuing in this way we get further terms of the sequences:

$$n = 0$$
 1 2 3 4 5 6
 $a_n = 1$ 2 3 2 -7 -38 -117
 $b_n = 0$ i 4 i 11 i 24 i 41 i 44 i

Thus we have all the powers of 2 + i up to the sixth calculated in succession and

$$(2+i)^6 = -117 + 44i.$$

Notice that the real and imaginary parts are calculated independently. If we only need the real part of $(2+i)^6$ we can ignore the calculation of the *b* sequence completely.

For another example we show that $\left(\frac{1}{2} + \frac{\sqrt{5}}{2}\right)^9 = 38 + 17\sqrt{5}$. Here a = 1/2 and $b = \sqrt{5}/2$. (a + b) is the golden section.) So 2a = C = 1 and $b^2 - a^2 = D = 1$. The recursion relations are particularly nice, being the same as for the Fibonacci sequence:

$$a_{n-2} + a_{n-1} = a_n$$
 and $b_{n-2} + b_{n-1} = b_n$.

The first two terms of the a sequence are 1 and 1/2, so the next is 3/2. The first two terms of the b sequence are 0 and $\sqrt{5}$ /2 so the next is $\sqrt{5}$ /2. The following terms of the sequences are

$$n = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$a_n = 1 \quad 1/2 \quad 3/2 \quad 2 \quad 7/2 \quad 11/2 \quad 9 \quad 29/2 \quad 47/2 \quad 38$$

$$b_n = 0 \quad \frac{\sqrt{5}}{2} \quad \frac{\sqrt{5}}{2} \quad \sqrt{5} \quad \frac{3\sqrt{5}}{2} \quad \frac{5\sqrt{5}}{2} \quad 4\sqrt{5} \quad \frac{13\sqrt{5}}{2} \quad \frac{21\sqrt{5}}{2} \quad 17\sqrt{5}$$

We have easily calculated all the powers of the golden section up to the ninth.

The reader may have observed that both of our examples are of the following type: Let F be a field and let $d \in F$ be chosen so that $\sqrt{d} \notin F$. If α and β are elements of F and n is a positive integer, we want to express $(\alpha + \beta \sqrt{d})^n$ in the form $\alpha_n + \beta_n \sqrt{d}$, where α_n and β_n are in F. Our method applies in all such cases, producing the sequences $a_n = \alpha_n$ and $b_n = \beta_n \sqrt{d}$.

212