row-reduced echelon matrices. Note that

= ()00}

0 1 2

In general, the number of distinct type-equivalent m X n matrices (that is, the
number of equivalence classes induced by the “type” relation) is given by

min(m,n) n
N(n,m) = ( )
() k§0 k

To verify this, first observe that the positions of the leading ones in any
row-reduced echelon matrix determine the type of all the entries in that matrix.
(They determine the positions of the forced zeros, and hence those of the undeter-
mined entries.) Thus, all we need show is that the number of ways that the leading
ones can be arranged is given by the formula above. Our approach will be to do this
for matrices of rank k (that is, with k nonzero rows in their reduced form) and then
sum the results from rank 0 to rank min(m, n) (the largest possible).

Suppose A4 is an m X n row-reduced echelon matrix of rank k. Then A4 has
exactly k leading ones. These leading ones, located in the first £ rows of A, must
occur in k distinct columns. Once the columns are specified, the positions of the
leading ones are completely determined since they form “stair steps” down to the
right. Since there are (}) ways of choosing k objects from a collection of » distinct
objects, there are (}) ways of positioning the leading ones. Thus, there are exactly (})
equivalence classes for m X n row-reduced echelon matrices of rank k. Summing
over k=0,1, ..., min(m, n) completes the proof.

As an example, observe that the number of distinct type-equivalent 3 X 3
row-reduced echelon matrices is

=)+ ()+()+()-
N(@3,3)= + + + = 8.
(3.3) (O 1 2 3
It is no coincidence that the answer turned out to be 23. Indeed, the number of

distinct type-equivalent square matrices of order n is equal to 2". This follows

immediately from
n

v = 3(1)

k=0
since (1 + x)" = S _o()x* yields 27 = S _ (1).

o

Using Riemann Sums in Evaluating a Familiar Limit
Frank Burk, California State University, Chico, CA, and Sudhir K. Goel and
Dennis M. Rodriguez, University of Houston-Downtown, Houston, TX

In “Alternate Approaches to Two Familiar Results” [CMJ 15 (November 1984)
422-426], Norman Schaumberger presented an elementary proof that

fim P _ 1 ()

n—oo n e

His proof stimulated our thinking and this led to the following geometrically
motivated proofs of (1), based on approximating [{In x dx by Riemann sums.
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Foreach k=2,3,...,n

1 ln( ) <f:/nl)/nlnxdx< —ln( %)

Hence, on summing over k = 2,3, ..., n, we have

nl(3)(3) - (5] e[ (2)(3) - ()]
Integrating and simplifying, we have

1/n
—1+l<ln[”—},] <-1+L14lnn (2)
n n n n

We can now use L’Hopital’s Rule, or the common technique

Inn _ ( In/n )( ) <2
" Vn J\Nn ) n
to show that (Inn)/n—0 as n—> oo. Taking the limit in (2) as n—> oo and using the
continuity of exponentiation, we obtain (1).

For a variation on this theme, let y = (Vn n!) /n. Then, upon taking natural logs
of both sides, we obtain

Iny= (l/n)(;::l lnk) —Ilnn= (l/n)];::] (Ink —Inn) = (l/n)ké] In(k/n). (3)

The last expression in (3) is a Riemann sum for the area between the x-axis and
y =Inx from x = 0 to x = 1. Thus,

nli)ngolny=follnxdx=al_i)rg+f‘zllnxdx=al_i)%1+ [(xInx = x)|!]= -1,

and so lim = e~ ! as desired.

n——)oo,y
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