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Four fundamental subspaces are associated with every m x n real matrix A: the null
space of A and the column space of AT are subspaces of R™; the null space of
AT and the column space of A are subspaces of R™. Strang [3-5] depicts these
subspaces as pairs of orthogonal planes that he uses to illustrate the “true action of
A times x: row space to column space, null space to zero.”

Here we will be exploring a slightly different diagram that has the same goal as
Strang’s and which I first encountered in my sophomore linear algebra course at
UC-Berkeley, taught by Professor Beresford Parlett. I offer several examples of how
the diagram helps explain some rudimentary concepts in linear algebra.

And here—drum roll, please—is our basic diagram: Figure 1. Note that R(-) and
N (-) denote the column space and the null space, respectively.
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Figure 1. Decomposition of R™ and R™ into direct sums of null
spaces and column spaces.

Example 1. By Figure 1 we want to suggest that R(AT) @ N (4) = R™, R(A) ®
N(AT) = R™, and that the subspaces are orthogonal complements. Once it has
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been established that rank AT = rank A (by counting pivots, for example), the
rank-nullity theorem is then apparent: rank A + null A = n.

If orthogonality has not made its appearance in the course at this time, it could be
briefly and intuitively presented here. In fact, many students take a course in vector
calculus before their first course in linear algebra, so would have seen orthogonality
vis-a-vis the dot product. Those students, certainly, should be convinced from Ax =
0 that the rows of A are orthogonal to each of its null vectors, and from ATy = 0
that the columns of A are orthogonal to each of its left null vectors.

Example 2. Given the matrix A, if we introduce a vector x in R", we argue by
Figure 2 that x has a unique row space component, X;ow, and a unique null space
component, Xnpyy. That is, X = Xyow + Xnun. These components are obtained by
finding the orthogonal projections of x in R(AT) and N'(A). Details will come later
in the course.
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Figure 2. Every vector in R™ has a row space component and a null
space component.

Example 3. Since Au = 0 for every u in N'(4), it follows that

Ax = A(xrow + xnull) = Axrow-

That is, Xyow is mapped into R(A) and x,,; is mapped into 0 in R™. Hence, as we
see in Figure 3, for b in R(A4), Ax = b has a unique solution if and only if N'(A)
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Figure 3. Left: x = x, is the unique solution to Ax = b. Right:
varying xp, in N'(A) obtains different solutions x.
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contains only the zero vector. And if N'(A) is not trivial, then the solution set to
Ax = b is the translation of N(A4) by a particular solution (there is only one in the
row space). The general solution to Ax = b is x = xj, + x,,, where x;, is the general
solution to Ax = 0 and x,, is the particular row space solution to Ax = b.

Example 4. Since we can solve Ax = b only when b lies in R(A), another idea
can be suggested by using Figure 4. It is the Fredholm alternative (1, 2]: For b in
R™, either b -y = 0 for every y in N(AT) or Ax = b has no solution, exclusively.
In other words, a solvability condition for Ax = b is that b be orthogonal to N'(AT).
Further, we see that Ax = b has a solution for every b in R™ if and only if N'(AT)
contains only the zero vector, that is, if and only if rank A = m.
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Figure 4. For b € R™, either b L N (AT) (left) or Ax = b has no
solution (right), exclusively.

Example 5. Figure 5 shows that if b is not in R(A), then we may solve, instead,
Ax = bproj, Where by is the projection of b onto R(A). It is evident from the
diagram that bp,,; is the vector in R(A) that is closest to b. This, of course, is the
least-squares approximation, and the error is clearly seen to be e, the orthogonal
complement of by;.
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Figure 5. Least-squares approximation: Ax = by, the projection
of b onto R(A); the error is e, the orthogonal complement of bpro;.
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Example 6. Lastly, suppose that b in R™ is not in R(A) and that x™ is the row
space component of a least-squares solution to Ax = b (see example 5). If A" is an
nxm matrix such that A*bpo; = xT and Ate = 0, then A*b = AT (bp,05+€) = xT.
In fact, as Figure 6 shows, we would have

At Axt = Atbyg; = xT.

That is, AT would be a left-inverse of A on the latter’s row space.
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Figure 6. The matrix AT, the pseudoinverse of A, is a left-inverse of A on
the latter’s row space: AT AxT = x7 for x* € R(AT).

Actually, the matrix AT does exist: it is called the pseudoinverse of A [4, 5], and it
is precisely A~ when A is invertible. The pseudoinverse of A can be found using
the singular value decomposition (SVD) of A; however, even without discussing the
SVD of a matrix, one can still introduce the notion of a pseudoinverse by using
Figure 6.

Acknowledgment. 1thank an anonymous referee for some very useful suggestions that helped me convey
my ideas more clearly.
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