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A Generalization of the Mean Value Theorem for Integrals
M. Sayrafiezadeh, Medgar Evers College (CUNY), Brooklyn, NY 11225

Consider the special class of Riemann sums for a continuous function f over
[a, b], in which the “sample points” ¢, divide the corresponding subintervals in a
fixed proportion. In other words, for a partition a =x,, x;,...,x, =b there is a
fixed number ¢ in [0, 1] such that ¢, =x;,_, +tAx,, i=1,2,...,n, where Ax, =x; —
X,;_;. The Riemann sums are then

n n
() = X f(e)) Ax;= X f(x;o +1Ax) Ax,.
i=1 i=1
Thus r,(0), r,(3), r,(1) are the left endpoint, midpoint, and right endpoint Riemann
sums for the partition.

Question. For a given partition does there exist a ¢ in (0,1) such that r,(c) =

Pf(x) dx?

The answer is yes! For n =1 this is just the mean value theorem for integrals,
and the general result easily reduces to this special case.

Proof. The function r,(¢) is continuous on [0, 1] since the functions f(x,_; + ¢t Ax;)
are composites of the continuous function f with the continuous (linear) functions
x,_y +tAx,. Continuity implies integrability, and

/lr”(t)dt=/l[ if(xi_1+tAxi)Axi] di=y ['F(xiy + 18x;) Ax,dr
0 0],=1 0

i=1

=X [ ) du= [ s

where u; =x,_; +tAx, Thus if 1= [2f(x)dx, then [{(r,(r)—1)dt=0, and the
mean value theorem for integrals yields a ¢ between 0 and 1 with the property that
r(¢) —I=0. This proves the assertion. M
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It is interesting that the terms in the sequence {r(¢)} are all continuous
functions whose integrals over [0,1] equal I, and from above their graphs all
intersect the horizontal line y =I. Moreover, provided that the mesh of the
partitions a =x, x,..., X, =b approaches zero as n — «, the sequence {r,(¢)}
converges uniformly on [0, 1] to the constant function I, since all Riemann sums of
f relative to partitions with sufficiently small mesh differ from I by as little as we
please. Figure 1, produced using Mathematica, shows the graphs of the constant
function 1= [}(e*/x)dx = 17.736 and the functions r(¢), r,(t), r3,(¢) on [0,1],
using partitions of [1, 4] into equal subintervals. The features just mentioned of the
sequence {r,(t)} are apparent in the figure. Do you see from the graph that the
midpoint sums give a good estimate of this integral?
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Card Shuffling in Discrete Mathematics
Steve M. Cohen, Roosevelt University, Chicago, IL 60605
Paul R. Coe, Rosary College, River Forest, IL 60305

The problem of determining the number of perfect shuffles required to return a
deck of cards to its original order is rich with ideas from elementary algebra,
discrete mathematics, and number theory [1]. Herstein and Kaplansky [2] used card
shuffling to motivate a discussion of permutation groups. We have found that for
beginning students in discrete mathematics, card shuffling can bring to life the
abstract notions of relations and digraphs.

If the overhand shuffle (described below) is applied repeatedly to a deck with an
even number of cards, eventually the deck will return to its original order. Let f(n)
denote this fundamental period of the shuffling process applied to a deck of 2
cards. Although a closed formula for f(n) has yet to be found, we shall see that
f(n) is easily computed because it has a simple algebraic interpretation. For more
advanced students in a number theory or abstract algebra course, the computation
of f(n) is seen to involve the structure of the multiplicative group of units in the
ring of integers modulo 2»n — 1.

The overhand shuffle. Cut the deck of 2# cards (Figure 1a) into two equal stacks,
say with the upper half placed on the right as in Figure 1b. Beginning with the
stack on the right, the top card is alternately drawn from each pile and placed in a
third pile (Figure 1c) until the two stacks are exhausted. Note that this shuffle
interchanges the top and bottom cards of the deck, so clearly f(n) is always even.
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