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Bond Duration: An Application of Calculus
John C. Hegarty, Bentley College, Waltham, MA 02154-4705

One important application of calculus in finance that has not yet appeared in
calculus textbooks is that of the duration of a bond, which is a measure of the
sensitivity of the bond’s price to changes in interest rates. Most people are aware
that the value or market price of a fixed-income investment such as a bond
decreases as interest rates rise and increases as interest rates fall. Moreover,
long-term bonds such as 30-year treasuries are more sensitive to interest rate
fluctuations than short-term investments such as 2-year treasuries. These charac-
teristics were illustrated during 1994 when the Federal Reserve Board raised
short-term interest rates six times. As a result of these actions, most bond mutual
funds showed negative total rates of return over this period, much to the dismay of
their investors; the funds whose portfolios consisted of long-term bonds suffered
the deepest declines.

The price of a fixed income investment is defined to be the present value of all
future payments. Thus, when interest is compounded continuously, the price of a
bond that pays n future payments (or “coupons”) is given, as a function of the
market interest rate i, by the equation

P(i)= ¥ Cpe s, (1)
k=1

where C, represents the kth payment paid by the bond at time ¢,.

The inadequacy of maturity (the length of time until the last payment is made)
as a measure of risk is illustrated in Figure 1, which shows the price of two bonds
that mature in five years, as functions of i. The upper graph represents a bond
paying a coupon of $60 per year for five years and having a face value of $700; the
lower graph represents a zero-coupon bond (no periodic payments) having a face
value of $1,000 at the end of five years. If the periodic payments were not
reinvested, the two bonds would be equally attractive to an investor. However, in
practice, the owner of the coupon-paying bond can reinvest each of the payments
to produce additional income and thereby make it more valuable than the
zero-coupon bond. In addition, the graphs illustrate clearly that the price of the
zero-coupon bond is more sensitive to interest rate fluctuations—its price drops
more for a given increase in i. This means that an investor who may have to sell a
bond before maturity should consider the higher risk associated with the possible
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drop in price of this type of bond if interest rates rise. The duration of a bond
helps to quantify this risk. It also helps to quantify the opportunity for financial
gain when interest rates decline.

The duration, D, of a bond is defined as (the negative of) the relative rate of
change of price with respect to interest rate; that is,

P'(i)
Ok )

Since P'(i) is negative, the negative sign in equation (2) ensures that D will have
positive values. If interest is given as an annual rate, so its units are years~!, then
D is measured in years. Equation (2) says that if we have a bond whose duration is
10 years, then an interest rate increase of half a point (Ai= %) must be
accompanied by a relative change in bond price AP/P= —(10X3%) = —5%,
i.e., a decrease in price of about 5%.

Figure 2 shows the graph of a hypothetical bond’s price as a function of the
interest rate, together with the graph of the tangent line at i = 0.10. Using only the
information contained in the graph, students are asked to determine the duration
of this bond when i = 0.10. The graph shows that P(10) = $75 and the slope of the
tangent line shows that P'(10)= —1500 §/year, yielding D =20 years. I have
found this kind of example useful because it focuses on the essence of the concept
without forcing the student to carry out any analysis. In addition, it reinforces
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graph reading skills; most students are quite surprised that the absolute value of
P'(10) is so large.

Note that if n =1 in equation (1), so the bond is a zero-coupon bond that pays a
fixed amount C after T years, then (2) becomes D = T years; that is, duration is
the same as maturity in this case. On the other hand, by combining (1) and (2) in
the general case, duration can be expressed as a weighted sum of the times
ty...,t,. In this form,

D= i (ﬂ)tk (3)

represents the weighted average maturity of n separate zero-coupon bonds. This
explains how the coupons serve to reduce the duration of a bond and, hence, to
make its price less sensitive to changes in interest rates.

The concept of duration as given in (3) was first developed by Macauley [5] for
the discrete compounding situation; it was later used by Hopewell and Kaufman [4]
to explain the relationship between volatility in bond prices and maturity.
Widespread use of the concept within the financial community did not occur until
the 1980s. The increased importance of duration as a measure of a bond’s risk is
indicated by the appearance of the term in the business press [1], [3] and monthly
newsletters which mutual fund advisory services send to their clients [2]. By
incorporating this concept in appropriate courses we can give our students some
useful knowledge and also convince them that mathematics is playing an increas-
ingly important role in a wide range of disciplines.
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The Falling Ladder Paradox
Paul Scholten, Miami University, Oxford, OH 45056
Andrew Simoson, King College, Bristol, TN 37620

Anyone who has studied calculus has probably solved the classic falling ladder
problem of related rates fame:

A ladder L feet long leans against a vertical wall. If the base of the ladder is
moved outwards at the constant rate of k feet per second, how fast is the tip of the
ladder moving downwards?

The standard solution model for this problem is to assume that the tip of the

ladder slips downward, maintaining contact with the wall until impact at ground
level, so that if the base and tip of the ladder at any time ¢ have coordinates
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