i/e

1<a<e” a=e' a>e

Figure 2a. Figure 2b. Figure 2c.

and exponential functions were discussed in texts, or correct graphs were given with
pointers to one or more exercises for justification.

A Numerical Introduction to Partial Fractions
Eric L. McDowell (emcdowell@berry.edu), Berry College, Mount Berry, GA 30149

This article introduces a numerical analogue to partial fraction decomposition. The
reasons explaining why the numerical process works are different from those behind
the algebraic procedure. (See page 150 of [1] for a sketch of a proof of the algebraic
theorem.) However, the analogue is so similar—and so much more intuitive—that most
students come away from it better equipped to face partial fraction decomposition with
confidence and authority.

The decomposition of a rational expression N (x)/D(x) whose numerator has de-
gree smaller than its denominator involves three primary steps [2]:

(a) Express D(x) as a product of its “prime” factors, say

D(x) = (g1(x))* - -+ (gn(x))™
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(b) Foreachi =1,...,nandeach j =1,...,a;, let f;;(x) denote a polynomial
of degree less than that of g;(x).

(¢) Solve
Nx)  fulx) = frk) fia, (%) P Jran (%)
Dx)  gi(®  (gi(x)® (&) (gn(X)™
for each fi;(x).

Except in the simplest of cases, the first step identified above requires at least poly-
nomial division, and may require a number of advanced techniques before D(x) can
successfully be written as a product of linear and quadratic factors. Carrying out step
(c) generally involves solving a system of linear equations. Although students gener-
ally come armed with these skills, many become lost in the details of the calculations
and lose sight of the goal toward which they are working. For these reasons, I offer the
following introduction to the technique of partial fraction decomposition.

Rather than presenting my class with a rational expression in one variable, I begin
by asking them to apply the following steps to a proper numerical fraction N/D:

(a) Express D as a product of prime factors, say

D=pi'py---p;".
(b') Foreachi =1,...,n and each j = 1,..., 4, let k;; denote an integer for
which |k;;| < p;.
(¢)) Solve
N k k k kna,
. _122 1_::11.{_...4_ o
D p pi p Pn
for each k;;.

Students learned to perform step (a’) in the seventh grade, and step (¢’) can usually
be accomplished with a bit of trial and error. (I suggest that step (c’) be approached
by first multiplying both sides of the equation by D, and then searching for solutions.)
Because the skill levels required to perform these steps are minimal, students approach
this exercise as a game rather than a task. Moreover, because steps (a')—(c’) are so
similar to steps (a)—(c), students learn the technique of partial fraction decomposition
through the game without losing sight of the goal of the process.

Example. Let’s apply steps (a')—(c’) to 71/90. Since 90 = 2 x 32 x 5, we begin by
writing

where A is between —1 and 1, both B and C are between —2 and 2, and D is between
—4 and 4. Solving for A, B, C, and D is easier if we first multiply both sides of our

equation by 90:
71 =45A +30B + 10C + 18D.

Students quickly recognize that 45(1) + 18(2) = 81, and then realize that A = 1,
B =0,C =-—1,and D = 2 is a solution.
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We call 1/2 +0/3 4+ —1/3% +2/5 a J-decomposition of 71/90. In general, we call

ki kK Kna,
R
P Pi P Pn

J-decomposition of N/D whenever each k;; and p; satisfy (a’)-(c’). Some proper frac-
tions have a unique J-decomposition—as, for example, the J-decomposition of any
proper fraction with a prime denominator. However, some fractions have more than
one J-decomposition. For instance, 71/90 also has the J-decomposition

71 1 2 2 =3

-2 3Tt
Characterizing the set of proper fractions that have unique J-decompositions, or de-
veloping a modification to (a’)—(c’) that would result in a unique J-decomposition for
each proper fraction, would make interesting investigations.

We complete this note by proving that every proper fraction N/D has at least one

J -decomposition. For positive proper fractions of the form N /p”", observe that k;/p +
ky/p*+ --- +k,/p" is a J-decomposition of N/p" if and only if N = k;p"~! +
kyp"~? + .- + k,. But this simply says that k,k; - - - k, is the representation of N in
base p. Since every N has such a representation, it follows that

N
— has a J-decomposition. )
pn
We also note the following.
N .. -N
If D has a J-decomposition, then so does o 2

Now, assume for the purpose of induction that for fixed n, every positive proper frac-
tion of the form k/p{" --- p;"7' has a J-decomposition. We want to show that any
positive proper fraction of the form N/p{'--- pi"-! p% also has a J-decomposition.
For simplicity of notation, let 7r; = p{'--- p:"' and m, = p®. Since 7, and 7, are
relatively prime, there exist integers A and B such that 1 = Am; + Br,. It follows that

N _NA+NB
771772_ T 771'

Using the division algorithm, we can find integers g;, r; fori = 1,2 with0 < r; < 7;
such that NA = g, + r, and NB = g 7 + r;. Thus,

N ry r
—=q1+qg+—+—. 3)
7T T Y[%)

Since g, and g; are integers, and the fractions in (3) are positive and proper, it follows
that g + g, is either —1 or 0. If g + g, = 0, then N/m 72 = ry /7, + ry/7,. Since
r1/m has a J-decomposition (by the induction hypothesis), we see that N /T, =
ri/m + ry/m, does also. If g + g, = —1, then N/mmy, = (r) — my)/m + ra/70,.
Since (wy — ry)/m; has a J-decomposition, so does r; — 71 /m; by (2). Therefore,
N/mmy = (ry — m) /7 + ry /7, has a J-decomposition. This proves that every posi-
tive proper fraction has a J-decomposition, and the full theorem now follows from (2).
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Students in my classes respond with interest and enthusiasm to the game of
J-decompositions. While playing, they develop an appreciation for, and a hint of
understanding behind, the process of partial fraction decomposition. Since the proof
outlined above involves an interesting application of the division algorithm, it could
provide an entertaining and instructive supplement to an abstract algebra or number
theory course.
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Euler’s Theorem for Generalized Quadrilaterals
Geoffrey A. Kandall (gkandall@snet.net), 230 Hill Street, Hamden, CT 06514-1522

In [1], J. B. Dence and T. P. Dence gave a proof of a theorem of Euler on convex
quadrilaterals ABC D (see Figure 1).

M,

Figure 1.

Theorem. Let M, and M, denote the midpoints of AC and BD, respectively. Then
AB"+BC +CD + DA =AC +BD +4M,M; .

(In other words. the sum of the squares of the sides is equal to the sum of the squares of
the diagonals, increased by four times the square of the segment joining the midpoints
of the diagonals.)

Actually, Euler’s theorem is valid for a much broader class of quadrilaterals, which
I refer to as generalized quadrilaterals. A generalized quadrilateral ABCD in R" is
the figure that has A, B, C, and D (any points in R") as vertices, AB, BC, CD, DA,
as sides, and AC and B D as diagonals. The vertices A, B, C, D need not be coplanar
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