forms for a given answer. (Any large group of test-takers will discover at least a few
that hadn’t occurred to us.) There is essentially only one correct 4 SD answer— the
infinity of variations beyond that number of places don’t have to be checked! The
choice of “4” is arbitrary, but it is large enough to eliminate guessing, and it is small
enough to override differences among calculators or (in most cases) disastrous
cancellations.

Of course, we usually cannot tell how a student arrived at a wrong decimal
approximation. (Since it is in the nature of calculus problems that the student’s
resort to the calculator comes late in the computation, an incorrect symbolic result
is also probably close at hand.) However, it is possible that a somewhat less accurate
decimal approximation may result from greater understanding of mathematics than
that being tested. For example, a student required to calculate a definite integral,
but who cannot remember the appropriate antiderivative, might resort to the
trapezoidal rule, with enough steps to get 2 or 3 SD. This approach should be
rewarded, not penalized, since it demonstrates a better understanding of integration
than most of our students ever acquire.

Acknowledgements. The organization of this note was substantially improved by suggestions from
Warren Page and several referees, one of whom contributed two of the references. The examples are
drawn from a handout prepared for calculus students at Duke. A copy of the handout may be obtained
from the author on request.

Finding Rational Roots of Polynomials
Don Redmond, Southern Illinois University, Carbondale, IL

In “Synthetic Division Shortened” [TYCMJ 12 (November 1981) 334-336], Warren
Page and Leo Chosid gave a very useful necessary condition for a polynomial with
integral coefficients to have a rational root. In this capsule, we provide two
additional results designed to ease the work involved in finding rational roots of
polynomials with integer coefficients. Although both of these results are known,
neither seems to be readily available in the literature. The proofs given here are
quite simple.
Let us begin by stating the rational root theorem.

Theorem 1. Let f(x)=a,x"+a,_x" '+ - +a;x +a, be a polynomial all of
whose coefficients are integers. If f(p/q) =0 for relatively prime integers p and q,
then pla, and q|a,,.

The procedure for finding the rational roots of the polynomial f(x) is to list all
possible rational numbers p/q such that p|a, and g|a,, and to see which, if any,
satisfy f(p/q) =0. Of course, this task isn’t quite as arduous as it looks, since we
can use Descartes’ rule of signs and results on upper and lower bounds for the zeros
to eliminate the need to check every possibility. And those rationals that need to be
tested can be checked rather quickly by the Page-Chosid method alluded to above.
However, if a, and a, have many factors, there could still be many rational
numbers to check.

Our first result says that if certain conditions are fulfilled, then the polynomial
has no rational roots.

Theorem 2. Let f(x) be a polynomial of degree at least two defined as in Theorem 1.
If ay, a, and f(1) are all odd, then f(x) has no rational roots.
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Proof. The proof is by contradiction using a simple parity argument. Suppose p/q
is a rational root of f(x), where p and ¢ are relatively prime. Then (Theorem 1)
pla, and gla,, and (since a, and a, are both odd integers) both p and g are odd
integers. Thus, for every pair of nonnegative integers satisfying k +j > 0, we have

p¥q’—1=0 (mod 2). (1)
From f(p/q) =0, we have
q"f(p/q) =a,p"+a, 1p""'q+ -+ +aq"=0.
Since f(1) is also odd, we have

f(1)=q"f(p/q)=/(1) =1 (mod 2). (2)
But, by (1),
f)=q"f(p/q)=a,(1-p") +a, ,(1-p"Yqg)+ - +a,(1-q")
=0 (mod 2). (3)

The contradictory results (2), (3) show that p/q cannot be a root of f(x). Thus, the
polynomial has no rational roots.

Example. The polynomial
x>+ Tx* —28x3 + 125x% + x — 3275
has no rational roots since as, a,, and f(1) = — 3169 are all odd. Thus, we need not
contemplate what to do with the 16 divisors of —3275.
Our second result is the following.

Theorem 3. Let f(x) be as in Theorem 1 and let a be an integer such that f(a) # 0.
If p and q are relatively prime integers such that f(p/q) =0, then

(p—aq)if(a).

Proof. We begin by noting that f(x)— f(a) is a polynomial with integer coeffi-
cients that has a as a root. Thus, by the factor theorem, there is a polynomial g(x)
with integer coefficients such that (x — a)g(x) = f(x) — f(a). Therefore,

(§—a)g<p/q)=f(p/q>—f<a)= ~f(a). (4)

If the polynomial f(x) has degree n, then g(x) has degree n—1, and so
q" 'g(p/q) is an integer. Since p and q are relatively prime, p —aq and ¢ are
relatively prime. Multiplying both sides of (4) by ¢”" we obtain

q" (p—aq)g(p/q) = —q"f(a). (5)
Since ¢""'g(p/q) is an integer, p —aq divides the right-hand side of (5). Since
p — aq and q are relatively prime, ( p — aq)|f(a), as asserted in our theorem.

Remark. 1f f(a)=0, then (p — aq)|f(a) for any p and q. If we take a = 0, then
f(a)=a, and we get p|f(0) = a,, which is part of the statement of the rational root
theorem (Theorem 1). This is why we have considered only nonzero a.

Example. Using Descartes’ rule of signs we see that
f(x)=36x%—96x>+49x*+47x3—33x2 - Tx + 4
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has four, two, or zero positive roots, and two or zero negative roots. To apply
Theorem 3, we would like to find an a # 0 so that f(a)# 0. We try a =1 and find
that f(1) = 0. We have found a root of f(x), but not an a to which we can apply
Theorem 3. Testing a = —1 yields f(—1) = 112. Thus, a rational root p/q of f(x)
must satisfy ( p + g)|112. A particular solution is p=1 and ¢=1.

Theorem 1 tells us that all rational roots of f(x) must lie among the 30 rational
numbers

1,-1,2,-2,4,-4,1/2,-1/2,1/3,-1/3,2/3,-2/3,4/3,
-4/3,1/4,-1/4,1/6,-1/6,1/9,-1/9,2/9,-2/9,4/9, —4/9,
1/12,-1/12,1/18, -1/18,1 /36, —1/36.
Based on Theorem 3, we know that only the following eleven of these rational
numbers may be possible roots:
1,-2,-1/2,1/3,-1/3,-2/3,4/3,—-4/3,1/6,—-1/9, —=2/9.
Since f(1) = 0, we begin our synthetic division and obtain

1|3 -9 49 47  -33 -7 4
36 —60 —11 36 3 —4
LL 36 —60 —11 36 3 -4 0
36 —24 =35 1 4
36 —24 =35 1 4 0

Thus, 1 is a double root. One can also readily verify that —1/2 is a double root, and
4/3 and 1/3 are simple roots.

It is also possible to use several different values of a to eliminate more rational
numbers from the list of potential rational roots.

Example. To find the rational roots of
f(x)=60x®—212x° + 203x* + 48x3 — 133x% + 10x + 24,

we first look for divisors of 60 and 24. This gives us (after deleting the repeats) 72
possible rational roots, which we will not list. Since f(1) = 0, we know that a =1 is
a root. Since f(—1) = 308 and f(2) = 200, we know (Theorem 3) that a rational root
p/q must satisfy

(p+¢)308 and (p—2q)/200.

These constraints reduce our list of 72 possible rational roots to the following 16
possibilities:

1,-2,3,-3,6,-8,-1,/2,1/3,-2/3,4/3, —-4/3,8/3,3/4,2/5,6/5, —1/12.
Readers can verify that f(x) has 1 and —1/2 as double roots, and 4/3 and 6/5 as
simple roots.

o

Another Proof of Chebysheff’s Inequality
Norman Schaumberger, Bronx Community College, Bronx, NY

If x; and y, (i=1,2,..., n) are real numbers such that

X2 X,> cre 2x,> 0 2x, and y 2> e 2y> 0 2y, (1)
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