After hearing a recording of this music, students enjoy analyzing the piece,
finding that the esthetic appeal and intellectual attractiveness of “Clapping Music”
can, in part, by explained by three factors: the complexity of pattern allowed by 12
beats composed of four pauses and eight claps, the variations that result from the
application of such a simple cyclic permutation, and the syncopation provided by
the particular 3,2, 1,2 pattern used by Reich. Students find these considerations
far more exciting than counting beaded necklaces! The use of materials from the
humanities in mathematics classrooms can be invaluable in maintaining students’
interest.

‘Hidden’ Boundaries in Constrained Max-Min Problems
Herbert R. Bailey, Rose-Hulman Institute of Technology, Terre Haute, IN 47803

In my first period Calc III class we considered the problem of finding the minimum
distance from the origin to the paraboloid z = 4 — x? — 4y2. The first octant of the
constraint surface is shown in Figure 1.

Figure 1

Minimizing distance-squared and replacing x2 by 4 — 4y? — z gives the following
function of two variables to be minimized
D(y,z)=4—-4y*—z+y?+2z*=4-3y*+z? —z.
Setting the partial derivatives D, and D, to zero gives
D,=—-6y =0
D,=2z-1=0.
Thus the only critical point of D is y =0, z=1/2. Solving for x on the paraboloid
gives the points Q,(1/7/2,0,3) and Q,(— /7/2,0,3). Q, is shown in Figure 1.
It was clear to the students that the distance from the origin to O, or Q, is not
minimal since the point (0,1, 0) is closer. I was at a loss to explain why the critical

points did not include the expected global minimum, but I was saved when the first
period ended.
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In the second period class we tried the same problem but used the constraint
equation to eliminate y? instead of x2. This time the resulting critical points gave
the expected points P,(0,y/31,/32,1/8) and P,(0, —y/31/32,1/8) corresponding
to the global minimum. P, is shown in Figure 1.

This example seemed to show that we must consider all possible eliminations of
variables via the constraint equation to be sure of finding the global extrema. This
could be bad news! To resolve this apparent difficulty, I first went to my favorite
calculus textbooks. The only hint of trouble that I found was in an example used by
Thomas and Finney [1] to motivate Lagrange multipliers. I next consulted my busy
colleagues and found them too busy with their own problems. When all else failed,
I tried a similar problem in the plane and discovered that there was difficulty at a
boundary. The problem in the plane was encountered in the paper “Exceptional
extremum problems” [2] and was resolved in the paper “So-called exceptional
extremum problems” [3]. (See also FFF 34, CMJ, March 1991.)

The operative theorem for global extrema problems states that if f(x,y) is
continuous on a bounded region R then its global extrema must be on the
boundary of R or in the interior of R where f, =f, =0 or in the interior where f,
or f, fail to exist. For our problem let us cut off the unbounded part of the domain
by requiring z > —2. This restriction will not exclude any minimum points since
x2+y?+ 22> 4 in the excluded region and we already know that the minimum is
no bigger than one (the distance-squared from (0,0, 0) to (0,1, 0)).

We now return to the first period substitution x?>=4—y?—z and note that
since x2>0 then 4 —4y?—z>0. The boundary z=4—4y? is the ‘hidden’
boundary that was not considered in the first hour solution. Thus we seek the
global minimum of D(y, z) on the bounded region —2 <z < 4 — 4y? shown as the
cross-hatched region in Figure 2.

z=4-4y?

=
Z
Z
N V 5 Y
A ...

?:

The interior candidates Q, and @, have already been found. There are no
boundary candidates on z = —2 since D >4 on this boundary. Boundary candi-
dates on the parabola z =4 — 4y? are found by considering

E(y)=D(y,4—4y?)=16y*-31y2+16, —3/2 <y<y3/2.
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The minimal value of E(y) must be either at its boundary points y = +/3/2
or at y=0, +31/32 where dE/dy =0. Comparing E(y) at these five
values of y, we find the minimum at y = +4/31/32. Solving for the correspond-
ing z on the parabola and x on the paraboloid gives P,(0,y/31,/32,1/8) and
P,(0, — y31/32,1/8) as the boundary candidates for minimal D(y, z).

The global minimum for distance-squared is then found by comparing the values
of D(y,2) at Q,, Q,, P, and P,. We find D=v13 /2 at Q, and Q, and
D =163 /8 at P, and P,. Thus the global minimum is at P, and P, on the
‘hidden’ boundary z =4 — 4y?2.

The method of Lagrange multipliers gives the same four candidates and also the
point (0,0,4) which we found using one of the values for which dE/dy =0. In
some cases the Lagrange method is algebraically easier but in many cases the
students (and teachers) miss some of the candidates when solving the system of
algebraic (often nonlinear) equations.
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Another Proof of a Familiar Inequality
Norman Schaumberger, Hofstra University, Hempstead, NY 11550

Let y;,¥,,...,y, be any permutation of the positive numbers x,, x,,..., x,. We
use a simple inequality involving the logarithmic function to obtain the following
familiar proposition:

xi\']x/sz [P x;fn ZyivlyéVZ e y;fn (1)

with equality if and only if x;,=y, (i=1,2,...,n).

The standard proof of (1) uses a not particularly simple induction argument.
[See D. S. Mitrinovié¢, Analytic Inequalities, Springer-Verlag, NY, 1970, p. 284.]

If x>0, then

x—1=Inux, (2)

with equality if and only if x = 1.

(2) follows immediately from the observation that f(x)=1Inx—x+1 has an
absolute maximum at x = 1, because f'(x) =1/x — 1 vanishes if and only if x =1,
and f"(x)= —1/x? is negative for all x.

Substituting x =y, /x; in (2) gives

Vi Y .
——1>In— (i=1,2,...,n). (3)

X X
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