A Discrete Intermediate Value Theorem

Richard Johnsonbaugh (johnsonbaugh@cs.depaul.edu), DePaul University, Chicago, IL 60604

Many theories in mathematics (for instance, difference and differential equations) come in discrete and continuous versions. Indeed, an entire book, *Excursions in Calculus: An Interplay of the Continuous and the Discrete* by Robert M. Young (MAA, Washington, DC, 1992), has been devoted to this topic.

In this note, I give a discrete intermediate value theorem and apply it in an appealing induction proof.

The continuous intermediate value theorem is well known:

If f is continuous on [a,b] and f(a)f(b) < 0, then f(x) = 0 for some x in (a,b).

A discrete intermediate value theorem (DIVT) is:

Let f be an integer-valued function defined on the integers in [m,n]. Suppose (as the equivalent of a continuity assumption) that $|f(i) - f(i+1)| \le 1$ for $m \le i < n$. If f(m)f(n) < 0, then f(x) = 0 for some integer x in (m,n).

As an application of the DIVT, consider the set L of all strings of the symbols a and b that can be constructed from the null string by application of a finite sequence of the rules:

- 1. if $\alpha \in L$ then $a\alpha b \in L$ and $b\alpha a \in L$;
- 2. if $\alpha \in L$ and $\beta \in L$ then $\alpha \beta \in L$.

It is clear from this definition that every element of L has equal numbers of a's and b's. But what about the converse?

Let α be a string of length n with equal numbers of a's and b's. We use induction on n to show that α is in L. The base case, n=0, is the null string, which by definition is in L. For the inductive step, assume that n>0 and that any string of length less than n with equal numbers of a's and b's is in L.

First suppose that α starts with a and ends with b. That is, $\alpha = a\beta b$ for some string β . Then β has equal numbers of a's and b's. So, by the inductive assumption, β is in L. It now follows that α is in L by rule 1. By the same argument, if α starts with b and ends with a, α is in L.

Now suppose that α starts and ends with a (and still has equal numbers of a's and b's). Here is where the DIVT can be used. Let

$$f(i) = \text{number of } a$$
's $- \text{number of } b$'s

within the first i symbols of α . Then f(1) = 1 and f(n-1) = -1.

Since f(i+1) and f(i) always differ by 1, f satisfies the "continuity" assumption, and the DIVT says that f(i)=0 for some i between 1 and n-1. It follows that $\alpha=\beta\gamma$, where β and γ are non-null strings having equal numbers of a's and b's. By the inductive assumption, β and γ are in L and, hence, $\beta\gamma$ is in L by rule 2. Similarly, if α starts and ends with b, α is in L.

____o__