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The following problem appeared in [1]:

PROBLEM: Let R be a commutative ring with unit element 1. Prove or disprove: If
a,b € R are multiples of one another, then they are unit multiples of one another;
that is, there is an invertible element u € R such that a = ub.

The given statement is false for a general commutative ring R (see [3]). We show
here, however, that it is true for Z,,.

In what follows we will use ¢ to denote the Euler phi-function; 7(n) will denote
the number of positive divisors of n. The following definition will be convenient:

DEFINITION. Let Z, be the commutative ring of integers modulo n, where n > 1 is
a given natural number. Two elements @ and b of Z,, not necessarily distinct, are said
to form an MM pair (mutual multiple pair) if there exist i, j € Z, such that a =ib
and b =ja in Z ; that is, a = ib (mod n) and b = ja (mod n). In this case, i and j are
called multipliers.

Note that 0 cannot form an MM pair with any element of Z, but itself. Also, if
n =p is a prime, then clearly any two non-zero elements of ZP form an MM pair, and
the multipliers i and j are both unique.

Following is a more meaty example.

Example: In Zg, the numbers 2 and 4 form an MM pair since 4=2 X2 and
2 =5 X 4. Similarly, 1 and 5 form an MM pair since 5=5X 1 and 1 =5 X 5. On the
other hand, 3 and 4 do not form an MM pair since 3j = 0 or 3 (mod 6) depending on
whether j is even or odd.

Observe that when a and b form an MM pair, the multipliers ¢ and j need not be
unique in general even if ¢ #0 and b # 0; e.g., in Z; we could also write 4 =5 X 2
and/or 2 =2 X 4.

LEMMA 1. Leta,b € Z,. Then a and b form an MM pair if and only if ged(a, n) =
ged(b, n).

Proof. Suppose a and b form an MM pair. Then there exist i, j € Z, such that
a=1ib and b =ja. Since ged(a, n)la implies ged(a, n)|ja, we have ged(a, n)|b and so
ged(a, n)lged(b, n). Similarly, ged(b, n)lged(a, n) and thus ged(a, n) = ged(b, n).

Conversely, suppose ged(a, n) =ged(b,n)=d. Let a=dd and b=db'. Then
either a =b =0 or ged(d', n) = ged(b', n) = 1. Since ged(d', n/d) = ged(b', n/d) =1
there exist i, j € Z, such that ¢ =b'i and b’ =d'j (mod n/d). Hence a =ib and
b =ja (mod n). This completes the proof.
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THEOREM 1. Suppose a,b € Z, form an MM pair. Then there exists an invertible

element uw € Z,, such that a = ub.

Proof. As in the proof of the lemma, let ged(a, n) = ged(b, n) =d, a =dd', and
b=db'.

Then there exists i € Z, such that ' =b'i (mod n/d). Clearly ged(i, n/d) =1 as
ged(d',n/d) = 1. By the celebrated theorem of Dirichlet, there are infinitely many
primes in the sequence {i + k(n/d)f;_,, and hence, a fortiori, there are primes in
this sequencé that exceed n. Thus there exists k, € N for which i + ky(n/d) is such a
prime, and so ged(i + ky(n/d), n) = 1. If we let u denote the least positive residue of
i +ky(n/d) modulo n, then u € Z, is such that

ged(u,n)=1 and wb' =ib'=d (mod n/d);
it follows that a = ub (mod n), which completes the proof.

Remark 1. The key to the preceding proof is the existence of an integer in the
sequence {i + k(n/d)};_, that is coprime with n. This result, which is a consequence
of Dirichlet’s theorem, appeared in [4, p. 12, Ex. 3] with an elementary proof.

we were led to wonder how many there are. We

n»

As we explored MM pairs in Z
found the following answer:

THEOREM 2. Let f(n) denote the number of unordered MM pairs in Z,. Then
f)=3ln+ Ly, ()] the summation is over all positive divisors d of n.

Proof. For each divisor d of n and for any a € Z,, note that ged(a, n) =d if and
only if a=dd for some a' €Z,,, such that ged(a',n/d)=1. Hence if we let

Z¥,g={me Zn/d|gcd(1n n/d) =1}, then, by Lemma 1, any two elements of Z}; ,
would form an MM pair and no elements of Z} ,;, can form an MM pair with
elements not in the set. Since |75 ;| = ¢(n/d), we have

ﬂw=24¢Mﬂ0+(MZMW}=Z(N@+(¢$w]

dln dln

n+ X o(d)’|,

dln

= LY [o(d) + o) = &

dln

where the last equality holds because X, ¢(d) =n (see, e.g., [2, Thm. 6.7, p. 212)).

Remark 2. Since there is no known closed form expression for ©;, ¢(d)?, the only
way to find the exact value of f(n) is to compute ¢(d) for all divisors d of n. A
corollary, however, gives a lower bound for f(n).

+1).

COROLLARY: f(n) > ( e

Proof. By the Cauchy—Schwarz inequality,
Ea(@' L= (To)] =,
dln dln dln

s0 Ly, #(d)* = n®/7(n). Substituting this into the formula from Theorem 2 com-
pletes the proof.
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The Game “Even Up” is a game of solitaire played with 40 cards from a standard
deck that has its jacks, queens, and kings removed. The cards are shuffled and dealt in
a row. If a consecutive pair of cards adds to an even number, then that pair can be
removed. The object of the game is to remove all of the cards.

More generally, we can play Even Up with 2n cards, x of them being odd and
2n —x being even. We require the number of cards to be even since the game cannot
be won with an odd number of cards. In fact, the game cannot be won when x is odd
since odd valued cards are removed in pairs. Harkleroad [1] showed that the game
involves no skill, in that the outcome is predetermined by the original order of the 2n

cards, and that the probability of winning is p(2n, x) = (x;2)~/ (2\") Thus the

probability of winning the original game is p(40,20) = 0.248.

A few remarks about p(2n, x) are called for. Clearly p(2n,0) = 1 =p(2n,2n). By
comparing p(2n, x) with p(2n, x — 2), one sees that for fixed n the probability of
winning is minimized when x =n. When n is large, we can use Stirling’s formula
(nl=(n/e)"-V2mn) to obtain p(2n,n)=2/Vmn.

For our purposes, any arrangement of 2n cards can be represented as the product
of a’s and b’s with a’s denoting odd cards and b’s denoting even cards. The rules of
Even Up reduce to the two multiplications a*> = 1 and b* = 1. Every game simplifies
to exactly one string of the form (ab)*, where —n <z <n and (ab)™* = (ba)".
Winning games occur when z = 0. Letting f(2n, x, z) denote the number of arrange-
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