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In mathematical analysis and its applications, the need sometimes arises to generalize
the concept of limit of a sequence (or of sum of a series) in order to include cases in
which the sequence (or the series) does not converge in the ordinary sense. One of
the several methods devised bears Euler’s name.

A sequence of real numbers {x,} is said to converge to x in the sense of Euler (or,
usually, to be Euler-convergent) if there exists s in the open interval (0, 1) such that

n

lim ), (?)sf(l —s)"_jxj =x.

The first key theorem on Euler convergence is as follows:

THEOREM 1. If a sequence {x,} of real numbers converges to x € R then it
converges to the same limit in the sense of Euler for every s € (0, 1).

Euler convergence is used in a natural way in the study of the asymptotic behavior
of cyclic Markov chains (see [5], Chapter V). While teaching Markov chains using the
approach of [5], we noticed that Theorem 1 could be proved in an elementary manner
by relying only on the Chebyshev inequality, which appears in introductory courses in
probability. Our proof provides a good chance to practice probabilistic reasoning. For
a purely analytical proof of Theorem 1, one is often (e.g., in [3]) referred to [4]. But
Hardy’s book is hard reading for an undergraduate—even more so since it deals with
series rather than with sequences.

A sequence of real numbers may be Euler-convergent without being convergent.
Consider, for instance the sequence {x,} with x,; =1, x5,,; =0 (j = 0), which does
not converge. As for Euler convergence, notice that

(2]t = 3 (3)oti-or

j=0 j=0

j even

this latter sum represents the probability that a binomial random variable S, takes an
even value. Here S, =Y7_, X;, where the X’s are Bernoulli random variables with
P(X, =1) =s. By the binomial theorem,

n
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j=0
j even j odd
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and

n

j=0
j even j odd

Adding the last two equations yields

n

P( U {S,.=j})= )y (’]7)37(1—3)"‘1’:1_&2_‘_2_31"_;

Jj even j=0
j even

this tends to 1/2 as n tends to .
Now we prove that Euler convergence is implied by ordinary convergence.

Proof of Theorem 1. Since

n

j=0

it suffices to consider sequences that converge to zero. Let {x,} be such a sequence.
For a fixed & € (0, s) there exists » € N such that |x,| < & for every n > v. Now let
A= max{lle :j=0,1,...} Then, for n> v, we have

n . n—j
]Z(],)sf(l—s) x;
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j=0 j=v
v—1
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Notice that if n > (v —1)/(s — &) then ns — (v — 1) > ne and, a fortiori, ns —j > ne
for j=0,1,..., v— 1. Finally, observe that

vl v—1
Z (;.l)sf(l—s)"_j =P( U (s, =]}) <P(|S,—ns|=ne).
j=0 j=0

Now, since the variance of the binomial distribution is equal to ns(1 —s) if s €(0,1)
is the probability of success, Chebyshev’s inequality yields

v—1
n\ . nej _ns(l—s) 1
Csi(1—s)"7 < < - 0.
JZO (J )S (1=5) Wt - ane’

Therefore,




316 MATHEMATICS MAGAZINE

tends to zero as n — .
Alternatively, in a more analytical vein, one could avoid recourse to the Chebysbev
inequality by considering the sum

v—1

5 (1) .

j=0

and noting that the number of terms (v) is fixed, and that the binomial coefficient
tends to infinity like n’/ while the factor (1 —s)"™/ tends to zero exponentially. Thus
each term in the sum (1), and hence the whole sum, tends to zero. Even this second
approach has a probabilistic meaning: it is well-known (see, e.g., [7; Section 3.3]) that
the terms of the binomial distribution increase in j from 0 to (n + 1)s and decrease
when j runs from (n+1)s+1 to n. Since v is fixed , the sum (1) represents,
when n goes to infinity, the ever-decreasing probability of the tail of the binomial
distribution. O

The first proof given above is an adaptation of the argument used by Bernstein [1]
in his proof of the Weierstrass theorem on uniform approximation by polynomials of
all functions that are continuous on a closed interval. A modern presentation can be
found in the exercises of [6] or in [2].
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